
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337390102

A Byte Pattern Based Method for File Compression

Chapter · November 2019

DOI: 10.1007/978-3-030-34989-9_10

CITATION

1
READS

226

5 authors, including:

Some of the authors of this publication are also working on these related projects:

A Neural Network for Forecasting View project

Air, Water and Waste Management View project

Jose Luis Hernández Hernández

TecNM / Instituto Tecnológico de Chilpancingo

52 PUBLICATIONS 381 CITATIONS

SEE PROFILE

Mario Hernández Hernández

Universidad Autónoma de Guerrero

26 PUBLICATIONS 130 CITATIONS

SEE PROFILE

Sajad Sabzi

Sharif University of Technology

62 PUBLICATIONS 704 CITATIONS

SEE PROFILE

Alejandro Fuentes-Penna

El Colegio de Morelos

104 PUBLICATIONS 171 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jose Luis Hernández Hernández on 21 May 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/337390102_A_Byte_Pattern_Based_Method_for_File_Compression?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/337390102_A_Byte_Pattern_Based_Method_for_File_Compression?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/A-Neural-Network-for-Forecasting?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Air-Water-and-Waste-Management?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Luis-Hernandez-Hernandez?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Luis-Hernandez-Hernandez?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Luis-Hernandez-Hernandez?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mario-Hernandez-Hernandez?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mario-Hernandez-Hernandez?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-Autonoma-de-Guerrero?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mario-Hernandez-Hernandez?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sajad-Sabzi?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sajad-Sabzi?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sharif_University_of_Technology?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sajad-Sabzi?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro-Fuentes-Penna?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro-Fuentes-Penna?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro-Fuentes-Penna?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose-Luis-Hernandez-Hernandez?enrichId=rgreq-480d3fb3cc20694bc5375811186e8b39-XXX&enrichSource=Y292ZXJQYWdlOzMzNzM5MDEwMjtBUzo4OTM3MTg4Mjc2NDI4ODJAMTU5MDA5MDU4MTk1OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Titulo: A Byte Pattern Based Method for File Compression

Autores: José Luis Hernández-Hernández

Mario Hernández-Hernández
Sajad Sabzi
Mario Andrés Paredes-Valverde
Alejandro Fuentes Penna

Revista: Communications in Computer and Information Science book

series (CCIS, volume 1124), pp. 122–134, 2019.
 Springer Nature Switzerland AG 2019.

Factor de Clasificación: Q3 en las categorías de SJR (2018)

Impacto de acuerdo a: SCImago Journal & Country Rank

Aceptado: Agosto-2019

Publicado: Noviembre-2019

Digital Object Identifier: https://doi.org/10.1007/978-3-030-34989-9_10

A Byte Pattern Based Method for File
Compression

José Luis Hernández-Hernández1(B) , Mario Hernández-Hernández2 ,
Sajad Sabzi3 , Mario Andrés Paredes-Valverde4 ,

and Alejandro Fuentes Penna5

1 TecNM/Technological Institute of Chilpancingo, Chilpancingo, Mexico
joseluis.hernandez@itchilpancingo.edu.mx

2 Autonomous University of Guerrero, Chilpancingo, Mexico
mhernandezh@uagro.mx

3 University of Mohaghegh Ardabili, Ardabil, Iran
sajadsabzi2@gmail.com

4 University of Murcia, Murcia, Spain
marioandres.paredes@um.es

5 TecNM/CIIDET, Querétaro, Mexico
afuentes@ciidet.edu.mx

Abstract. This research presents a method to allows the data compre-
ssion from a file containing any type of information by combining the
pattern theory with the theory of data compression. This proposal can
reduce the storage space of a file data from any kind of computer, plat-
form or operating system installed on that computer. According to the
fundamentals of patterns, a pattern is a regularity of bytes contained
within a file with self-similarity characteristics; if this concept applies to
data files, we find certain amounts of auto-similar or patterns repeated
several times throughout the file; with a store data representation and
being referenced, at a certain point data can be recovered from the orig-
inal file without losing a single data, and consequently saving space on
the hard disk.

In the search for various ways to compress data, led me to analyze
and implement the proposed methodology in a beta mode compression
software for Windows 10, which presents very compromising results.

Keywords: Patterns · Data compression · Tiles · Mathematical
pattern

1 Introduction

This research proposes a file compression method that allows reducing file size so
that it takes up less space on the computer’s hard drive. This method does not
affect the content or structure of the file, it simply reduces the space it occupies [9].

In computer science, the purpose of compressing a data file is to use an
algorithm and apply it to the data so that it has a transformation and takes
c© Springer Nature Switzerland AG 2019
R. Valencia-Garćıa et al. (Eds.): CITI 2019, CCIS 1124, pp. 122–134, 2019.
https://doi.org/10.1007/978-3-030-34989-9_10

A Byte Pattern Based Method for File Compression 123

up less storage space. Depending on the data types contained in the file, the
implemented algorithm may be more or less effective. Aiming to perform the file
compressing process, a well-crafted algorithm, a large memory capacity, and a
processor with good processing speed are needed [14,17].

Data compression typically applies when a file needs to be sent over the
Internet because email and messaging applications put limits on the size of the
files that can be sent. Therefore, the file is usually compressed to be sent over
the network. Data compression, which involves transforming data into a given
format, helps to reduce storage and communication costs [8,11,12,21].

The file compression method proposed in this work uses the fundamentals of
patterns approach for data compression purposes. A pattern in an image is the
minimum unit of the image that bears a resemblance in colour and size and that
is repeated several times in an image or group of images [23].

The most basic patterns of images are commonly called tiles based on repe-
tition and recurrence. A single template, tile or cell, is combined by unchanged
duplicates or modifications [1].

The fractals are another kind of pattern, that are geometric objects whose
basic structure, fragmented or seemingly irregular, is repeated at different scales
[20]. The term was proposed by mathematician Bernot Mandelbrot in 1975 and
derives from Latin fractus, meaning broken or fractured. Many natural structures
are fractal type as it says [3]. The key mathematical property of a genuinely
fractal object is that its fractal metric dimension is a rational number and is not
an integer [4].

The type of pattern that can be used in flat files are adjacent bytes, which form
syllables, word fragments, words, or similar fragments [15]. In a data file that con-
tains any type of information (image, video, text, etc.), the bytes that are stored
one after the other correspond to the ASCII code. This group of elements can be
letters, numbers, special characters, or characters of control; so that each byte has
a value between the range 0 to 255 according to ASCII code. In this way, a block
of bytes can be simplified and represented by a single integer [19].

The form of self-similarity representation has much to do with the fractal
concept established by Bernot Mendelbrot. This property allows to recognize
elements that have the characteristics of the whole, from which it is extracted
and it allows that to replicate that whole can be regenerated. Figure 1 shows the
4 types of patterns described above.

Data compression is useful because it helps to reduce the use of expensive
resources, such as disk space or the bandwidth to transmit data [7]. On the
negative side, compressed data must be decompressed to be seen and this addi-
tional process may be detrimental to some applications. For instance, a com-
pression scheme for video may require expensive hardware, so that the video is
decompressed fast enough as to be seen while decompressing (there is the option
to decompress the video completely before seeing it, but this is inconvenient
and storage space required to see the decompressed video). Thus, the design of
data compression schemes implies compensation among several factors such as

124 J. L. Hernández-Hernández et al.

(a) Tile (b) Fractal

(c) Mathematical pattern (d) Byte pattern

Fig. 1. Diversity of patterns that can be used.

number of bytes in the file, degree of compression, the compression algorithm
used and necessary computing resources to compress/decompress the data [2,18].

Nowadays, a file compressor application is installed on many computers. This
application allows grouping multiple files and/or folders into a single package to
reduce the space you occupy on the storage medium.

The two most used file compressors are: WinZip c© and WinRar c©. The
most important characteristics of these tools are described below:

– WinZip c© is a commercial file compressor developed by WinZip Computing
(formerly known as Nico Mak Computing) that works on Microsoft Windows.
It can handle several additional file formats. (WinZip c© is a registered trade-
mark of Microsoft Corporation ®) [22].

– WinRar c© is a useful application that allows creating, managing and con-
trolling directories. It is the most widely used solution for decompression and
compression of information, helping to reduce the size and improve response
time when sending content or creating a backup. It is compatible with any
type of document or application and provides a RAR and UnRAR file decom-
pressor for multiple platforms. (WinRar c© is a registered trademark of RAR-
BAL ®) [13].

WinZip c© and WinRar c©, compress any type of data contained in a file and
can subsequently decompress it without data loss. It performs data compression

A Byte Pattern Based Method for File Compression 125

using byte patterns and strings that repeat throughout the file and perform
exactly the same function.

2 Materials and Methods

To perform data compression, is considered of the fact that groups of elements
exist that have the basic properties of self-similarity and through which it is
possible to reproduce all and each of the combinations that can be found in
ASCII code.

The first step of the file compression process consists in representing 2 adja-
cent bytes as a pattern of its original elements. The result of this task is a
representation of each pair of adjacent bytes of a defined block of bytes. This
process is repeated with the new patterns found in order to create patterns of
2, 4, 8, 16, 32, . . ., n byte groups.

Thanks to this process, the data storage is very efficient since instead of
storing the entire block of bytes, only its pattern-based representation is stored.

The file compression and decompression processes require a master pattern
file that has the format shown in Table 1.

Table 1. Data structure of the master pattern file.

Pattern number Left byte Right byte

Any integer from 256 Any integer value with
its respective sign

Any integer value with
its respective sign

Where:

a. Pattern number. It is a positive integer that is generated with values ranging
from 0 to 255 because they are taken directly from the ASCII code to represent
each of the respective characters (some not printable and other control).

b. Left byte. It is a positive or negative number, which corresponds to the first
byte of the pair of bytes that you want to handle as a pattern.

c. Right byte. It is a positive or negative number, which corresponds to the
second byte of the pair of bytes that you want to handle as a pattern.

The data structure above presented corresponds to each pattern stored in a
file known as Pattern Master File. Once file compression using integer patterns
is performed, a file composed of the next two parts is obtained:

a. Header. It contains data that identifies it as a patterns file, file size, as well as
the name of the original file (original unit, path, file name, and your exten-
sion), as shown in Table 2.

b. Data area. It contains only integer numbers that correspond to patterns con-
sisting of a group of three integer values.

126 J. L. Hernández-Hernández et al.

Table 2. Structure of the pattern file header.

Identifier Size in bytes File name

This field is composed
of 2 bytes as follows:
ASCII code: 80 letter
‘P’; ASCII code: 97
letter ‘a’

This field stores in an
integer value, the amount
in bytes occupied by the
file name

This field contains: storage
unit, path, file name and
your extension (original)

2.1 Compressor Architecture

Regarding the man-machine interface, the project includes tools that allow users
to build the form look & feel of user interfaces [16], to configure the screen layout.
These features allow users to configure the information displayed on the screen
in terms of information density and attributes of deployment such as colours,
types of lines, filling patterns of the figures, sizes, titles, resolution, etc. Figure 2
depicts the architecture of the file compression application proposed in this work.

Fig. 2. Basic scheme of the file compressor.

It also uses context-sensitive support to assist the user in the operation of
the interface and of interaction techniques and dialogues. The reliability and
acceptance of the system involve some considerations that must be taken into
account in all aspects of design and development to minimise the possibility of
data failures.

A Byte Pattern Based Method for File Compression 127

2.2 Compression Process

For developing the file compression application here proposed, it is required to
analyse all the file to be compressed and search for repetitive patterns which will
be considered as similar auto entities. Then, these patterns are represented as a
unique integer numeric value and are stored in a pattern file that will be used
by the decompression process. This file is also known as data dictionary.

The new patterns that are generated are stored in a file, however, any known
pattern is no longer stored; it is simply used for compression and the decom-
pression of a file.

At the time of finding new patterns is always verified the pattern obtained,
against those that already exist and if it exists takes its entire numerical value
to represent it in the file being compressed.

Unfortunately, the patterns are generated in a static form and are defined as
the data necessary to represent the pattern [5,6,10,17]. These data are repre-
sented by the structure shown in Table 3.

Table 3. Structure to store the patterns that are obtained.

Pattern Left element Right element

One number One number One number

The structure of Table 3 will be used and stored in a file called MASTER.
CFP (Compressed file with patterns) and will be found in the unit C in the folder
C:\WINDOWS of the computer in use and with this form of compression,
stored patterns are simply used. A drawback is that each time a new pattern is
generated, it is stored in the master file of patterns that will continue growing.
The Algorithm 1 used to compress the data of a file using patterns is shown
below.

A training process consisting of testing about 100 files with different content
is performed. This process aims to store the most amount of patterns that may
be required for the decompression operation in the master file of fractals.

When installing the software, it will copy the master file of fractals to the
root level on the computer in use.

When performing the compression process, the master file of fractals will
grow a little and at that time the new patterns will be updated in a copy that
will be in the cloud. Such a copy of the cloud updates the fractal master file in
real-time installed on any computer.

2.3 Decompression Process

The decompression process starts by opening a file that has been compressed
with the compression project software. In the file opening dialog box, the appli-
cation only shows those files that have extension CFP.

128 J. L. Hernández-Hernández et al.

Algorithm 1. Algorithm to compress a file using patterns.
1: Open file to compress (source)
2: Open file where the compressed data will be (output)
3: while (not end of file) do
4: Read 50 bytes from the source file
5: Take numerical value according to the ASCII code of each character
6: Take pairs of bytes to create patterns
7: Check if the pattern exists in the pattern master
8: If the pattern does not exist, store it in the master pattern file
9: Rebuild pattern repeatedly
10: Write the pattern to the output file
11: end while
12: Close files

Once a file with the specified extension is opened, the application verifies
that the characters “P” and “a” exist in the first 2 bytes. If the file does not
have this identifier, it means that the file is damaged and/or was not created
with this application.

In this process, a string of characters containing information such as unit,
the path, file name, and the extension with which the file will be created is used
to determine where it will be decompressed. Then, integer values or patterns are
read, one by one until you reach the end of the file to decompress.

The decompression process is performed for each integer value or pattern
identified. The Algorithm 2 used to decompress data from a file using patterns
is shown below.

Algorithm 2. Algorithm to decompress a file using patterns.
1: Open file to decompress
2: Open the output file
3: Read the header of the file to be decompressed
4: Verify that the first 2 bytes have the characters “Pa”
5: while (not end of file) do
6: Read an integer (pattern)
7: Search for the pattern in the pattern master file
8: Take the 2 numerical values
9: Find each numerical value in the master pattern file
10: end while (values are in the range of 0-255)
11: Write all the patterns found in the output file
12: Close files

2.4 Case Study of Compression/Decompression with Patterns

The operation we are going to perform is to compress the “Pattern” text. The
first step consists of taking the ASCII code from each of the characters. The
result of this step is: 80, 97, 116, 116, 101, 114, 110 and 115.

A Byte Pattern Based Method for File Compression 129

Next, pairs are taken of which only the corresponding value of the ASCII
code is considered and each pair is assigned a consecutive number from 256 (it
should be noted that the values of 0 al 255 correspond to the character set values
of the ASCII code) as shown in Fig. 3.

Fig. 3. Patterns generated from pairs of integer values.

The values obtained are taken, the same procedure as shown above is applied
and we get what is shown in Fig. 4.

Fig. 4. Other patterns generated from pairs of integer values.

Once the previous operations were performed, an integer number, which is
equivalent to the corresponding couple, is obtained for each pair. The obtained
numbers are stored in the pattern master file with their corresponding values as
shown in Table 4.

Table 4. Patterns that are stored in the master pattern file.

Pattern Left Right

256 80 97

257 116 116

258 101 114

259 110 115

260 256 257

261 258 259

262 260 261

Finally, an integer equivalent to the pattern of the chain is obtained. This
result is shown in Fig. 5.

Instead of the string, the number 262, which occupies only 2 bytes, is stored
thus obtaining a compression rate of 96% of the original file size to be compressed
i.e., the text uses 2 bytes of storage.

130 J. L. Hernández-Hernández et al.

Fig. 5. Text string with its respective pattern.

It should be noted that the master patterns file grows each time the compre-
ssion process is performed because of this file stores all unknown combinations of
byte pairs (also called patterns). Figure 6 depicts how the patterns were formed
from top to bottom.

Fig. 6. Creating patterns from top to bottom.

The second operation that is performed is decompressing the pattern 262.
The decompression process, which consists of performing the opposite compre-
ssion process, is applied to each pattern identified.

To clarify this process, let’s take the example of compression: Be the pattern
262.

The pattern is taken and is searched in the pattern master file. This pattern
is equivalent to the following values: 260 and 261. Once we have such values,
the same previous process is done for each number thus obtaining the following
values: 256, 257, 258 and 259.

The four numbers obtained previously are searched into the master pattern
file thus obtaining the following values: 80, 97, 116, 116, 101, 114, 110 and 115.

Finally, the string obtained in the uncompressed file is written. In this way,
the size of the resulting file is 2 bytes instead of 8 bytes as shown in Fig. 7.

Figure 7 depicts the complexity pyramid to decompose the patterns until
recovering the original data from the file.

Fig. 7. Pyramid of complexity of the decompression process.

A Byte Pattern Based Method for File Compression 131

3 Results and Discussion

In the investigation that was done about file compressors that exist commercially
or well as shareware, can be counted by hundreds and of very different forms of
operation, in various environments.

We compare the compressor operation using patterns, WinZip c© and Win-
Rar c©; in order to have comparison parameters.

They took 6 Word files that have extension. docx, they were compressed
with the proposed file compressor, the WinZip c© [22] and WinRar c© [13]. The
results and percentages obtained are shown in Table 5.

Table 5. Word files (documents) compressed with the 3 compressors.

File name Size in bytes Pattern compression WinZip c© WinRar c©
Size Percentage Size Percentage Size Percentage

Pattern Basics.docx 5,471 253 4.62% 1,696 31.00% 1,624 29.68%

Fractal.docx 9,142 397 4.34% 3,760 41.13% 3,720 40.69%

My story.docx 12,921 549 4.25% 4,922 38.09% 4,916 38.05%

Collaboration.docx 10,567 455 4.31% 4,075 38.56% 4,033 38.17%

References.docx 9,666 419 4.33% 3,598 37.22% 4,555 47.12%

Prologo.docx 8,021 355 4.43% 3,165 39.46% 3,120 38.90%

Based on the data presented in Table 5, a comparative graph of united points
was generated, obtaining the results shown in Fig. 8.

Fig. 8. Comparative graphic of compressed files with the 3 compressors.

In compressed text files, the average percentages of space they occupy are
the following: Pattern compression has 4.36%, WinZip has 32.58% and WinRAR
has 38.75%. Therefore the most optimal is the Pattern compression.

132 J. L. Hernández-Hernández et al.

Another 6 image files (.BMP) were compressed with the 3 compressors that
are being evaluated. The resulting percentages are shown in Table 6.

Table 6. Image files compressed with the 3 compressors.

File name Size in bytes Pattern compression WinZip c© WinRar c©
Size Percentage Size Percentage Size Percentage

Circle.bmp 7,422 335 4.5% 521 7.0% 457 6.2%

Fig410.bmp 8,702 387 4.5% 1,296 14.9% 1,161 13.3%

Arrow.bmp 7,322 331 4.5% 618 8.4% 513 7.0%

Duck.bmp 18,678 783 4.2% 1,313 7.0% 1,213 6.5%

Jlhh1.bmp 8,062 360 4.5% 819 10.2% 752 9.3%

Curve.bmp 5,862 272 4.6% 788 13.4% 708 12.1%

Based on the data presented in Table 6, a comparative graph of united points
was generated, obtaining the results shown in Fig. 9.

Fig. 9. Comparative graphic of compressed files with the 3 compressors (images).

In compressed image files, the average percentages of space they occupy are
the following: Pattern compression occupies 4.46%, WinZip occupies 10.15%
and WinRAR occupies 9.06%. Therefore the most optimal is the pattern com-
pression.

The disadvantages of pattern compression are the following:

– A complete file folder cannot be compressed/decompressed. It is working so
that in the next version, you can compress several files that are inside a folder.

– It is not compatible with WinZip and WinRAR.

A Byte Pattern Based Method for File Compression 133

4 Conclusions

In today’s times, data storage devices have made dizzying progress, but also the
software is becoming more complex and data files require more and more space.

In the case of executable files and any file that stores an image, sound or
video, they require a large amount of space in bytes to be able to fully store the
information of the same.

For many years, computer users have discussed the benefits and limitations of
video cards, audio cards, memory or hard drives. However, all these components
called hardware would have taken many more years to evolve without there being
the need to break existing physical boundaries when handling information. It’s
then that it’s about data compression.

As for the benefit you can use the compressor made with a certainty of 99.8%.
It was used personally to compress approximately 50 files and worked correctly
100% in both their compression and decompression.

Through the development and implementation of this file compressor, new
approaches, extensions, and improvements have emerged to it.

File compression and decompression may no longer be as popular today due
to improvements in storage capacities, both on email accounts, hard drives, and
Internet speed; in addition to the decrease of direct downloads and the growth
of the torrent download (small file that contains all the information about other
content that we want to download), but anyway it is still a very useful tool.

As a research project has its limitations and scopes, further work can be
proposed to improve it.

Acknowledgments. Authors are grateful to TecNM/Technological Institute of
Chilpancingo, Autonomous University of Guerrero (UAGro), University of Mohaghegh
Ardabili, University of Murcia and TecNM/CIIDET for supporting this work.

References

1. Akiyama, J.: Tile-makers and semi-tile-makers. Am. Math. Mon. 114(7), 602–609
(2007)

2. Bachu, S., Chari, K.M.: A review on motion estimation in video compression. In:
2015 International Conference on Signal Processing and Communication Engineer-
ing Systems, pp. 250–256. IEEE (2015)

3. Belchor, P.M., et al.: Use of fractals channels to improve a proton exchange mem-
brane fuel cell performance. J. Energy Power Eng. 9, 727–730 (2015)

4. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory
of Keller-Segel models of pattern formation in biological tissues. Math. Models
Meth. Appl. Sci. 25(09), 1663–1763 (2015)

5. Bentley, J., McIlroy, D.: Data compression using long common strings. In: Proceed-
ings DCC 1999 Data Compression Conference (Cat. No. PR00096), pp. 287–295.
IEEE (1999)

6. Bentley, J., McIlroy, D.: Data compression with long repeated strings. Inf. Sci.
135(1–2), 1–11 (2001)

134 J. L. Hernández-Hernández et al.

7. Kuhn, M., Kunkel, J.M., Ludwig, T.: Data compression for climate data. Super-
comput. Front. Innov. 3(1), 75–94 (2016)

8. Larsson, N.J.: Structures of String Matching and Data Compression. Lund Uni-
versity, Sweden (1999)

9. Lippert, L., Gross, M.H., Kurmann, C.: Compression domain volume rendering for
distributed environments. Comput. Graph. Forum 16, C95–C107 (1997)

10. Long, P.M., Natsev, A.I., Vitter, J.S.: Text compression via alphabet re-
representation. Neural Netw. 12(4–5), 755–765 (1999)

11. Makkar, A., Singh, G., Narula, R.: Improving LZW compression 1 (2012)
12. Müldner, T., Leighton, G., Diamond, J.: Using XML compression for WWW com-

munication. In: Proceedings of the IADIS WWW/Internet 2005 Conference (2005)
13. RarLab, WinRar: software system for compress files (2019). http://www.win-rar.

com/rarproducts.html. Accessed 08 Aug 2019
14. Reghbati, H.K.: Special feature an overview of data compression techniques. Com-

puter 14(4), 71–75 (1981)
15. Reghizzi, S.C., Pradella, M.: Tile rewriting grammars and picture languages.

Theor. Comput. Sci. 340(2), 257–272 (2005)
16. Santaolaya, S.R.: Ambiente de Desarrollo para la Programación Visual de Inter-

faces de Usuario para Monitoreo de Procesos en Ĺınea. Ph.D. thesis, Centro
Nacional de Investigación y Desarrollo Tecnológico (CENIDET) (1995)

17. Sayood, K.: Introduction to Data Compression. Morgan Kaufmann, Burlington
(2017)

18. Sikora, T.: MPEG digital video coding standards. In: Compressed Video over Net-
works, pp. 45–88. CRC Press (2018)

19. Soria, F.G., et al.: Sistemas evolutivos. Bolet́ın de Poĺıtica Informática. México
(1986)

20. Stamps, A.E.: Fractals, skylines, nature and beauty. Landsc. Urban Plan. 60(3),
163–184 (2002)

21. SubhamastanRao, T., Soujanya, M., Hemalatha, T., Revathi, T.: Simultaneous
data compression and encryption. Int. J. Comput. Sci. Inf. Technol. 2(5), 2369–
2374 (2011)

22. WinZip: Program of compression for windows (2019). http://www.winzip.com/ru/
prodpagewz.htm. Accessed 08 Aug 2019

23. Wu, H., Chen, Q., Yachida, M.: Face detection from color images using a fuzzy
pattern matching method. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 557–563
(1999)

View publication stats

https://www.researchgate.net/publication/337390102

