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Abstract: If X is a geodesic metric space and x1; x2; x3 2 X , a geodesic triangle T D fx1; x2; x3g is the union of
the three geodesics Œx1x2�, Œx2x3� and Œx3x1� inX . The spaceX is ı-hyperbolic .in the Gromov sense/ if any side of
T is contained in a ı-neighborhood of the union of the two other sides, for every geodesic triangle T in X . Deciding
whether or not a graph is hyperbolic is usually very difficult; therefore, it is interesting to find classes of graphs
which are hyperbolic. A graph is circulant if it has a cyclic group of automorphisms that includes an automorphism
taking any vertex to any other vertex. In this paper we prove that infinite circulant graphs and their complements
are hyperbolic. Furthermore, we obtain several sharp inequalities for the hyperbolicity constant of a large class of
infinite circulant graphs and the precise value of the hyperbolicity constant of many circulant graphs. Besides, we
give sharp bounds for the hyperbolicity constant of the complement of every infinite circulant graph.
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1 Introduction

Hyperbolic spaces play an important role in geometric group theory and in the geometry of negatively curved spaces
(see [1–3]). The concept of Gromov hyperbolicity grasps the essence of negatively curved spaces like the classical
hyperbolic space, simply connected Riemannian manifolds of negative sectional curvature bounded away from 0,
and of discrete spaces like trees and the Cayley graphs of many finitely generated groups. It is remarkable that a
simple concept leads to such a rich general theory (see [1–3]).

The first works on Gromov hyperbolic spaces deal with finitely generated groups (see [3]). Initially, Gromov
spaces were applied to the study of automatic groups in the science of computation (see, e.g., [4]); indeed, hyperbolic
groups are strongly geodesically automatic, i.e., there is an automatic structure on the group [5].

The concept of hyperbolicity appears also in discrete mathematics, algorithms and networking. For example, it
has been shown empirically in [6] that the internet topology embeds with better accuracy into a hyperbolic space
than into a Euclidean space of comparable dimension (formal proofs that the distortion is related to the hyperbolicity
can be found in [7]); furthermore, it is evidenced that many real networks are hyperbolic (see, e.g., [8–12]). A
few algorithmic problems in hyperbolic spaces and hyperbolic graphs have been considered in recent papers (see
[13–16]). Another important application of these spaces is the study of the spread of viruses through the internet
(see [17, 18]). Furthermore, hyperbolic spaces are useful in secure transmission of information on the network (see
[17–19]); also to traffic flow and effective resistance of networks [20–22].
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In [23] it was proved the equivalence of the hyperbolicity of many negatively curved surfaces and the
hyperbolicity of a graph related to it; hence, it is useful to know hyperbolicity criteria for graphs from a geometrical
viewpoint. In recent years, the study of mathematical properties of Gromov hyperbolic spaces has become a topic of
increasing interest in graph theory and its applications (see, e.g., [11, 17–19, 23–40] and the references therein).

If .X; d/ is a metric space and 
 W Œa; b� �! X is a continuous function, we define the length of 
 as

L.
/ WD sup
n nX

iD1

d.
.ti�1/; 
.ti // W a D t0 < t1 < � � � < tn D b
o
:

We say that a curve 
 W Œa; b� ! X is a geodesic if we have L.
 jŒt;s�/ D d.
.t/; 
.s// D jt � sj for every
s; t 2 Œa; b�, where L and d denote length and distance, respectively, and 
 jŒt;s� is the restriction of the curve 

to the interval Œt; s� (then 
 is equipped with an arc-length parametrization). The metric space X is said geodesic if
for every couple of points in X there exists a geodesic joining them; we denote by Œxy� any geodesic joining x and
y; this notation is ambiguous, since in general we do not have uniqueness of geodesics, but it is very convenient.
Consequently, any geodesic metric space is connected. If the metric space X is a graph, then the edge joining the
vertices u and v will be denoted by Œu; v�.

Along the paper we just consider graphs with every edge of length 1. In order to consider a graphG as a geodesic
metric space, identify (by an isometry) any edge Œu; v� 2 E.G/ with the interval Œ0; 1� in the real line; then the edge
Œu; v� (considered as a graph with just one edge) is isometric to the interval Œ0; 1�. Thus, the points inG are the vertices
and, also, the points in the interior of any edge ofG. In this way, any connected graphG has a natural distance defined
on its points, induced by taking shortest paths in G, and we can see G as a metric graph. If x; y are in different
connected components of G, we define dG.x; y/ D 1. Throughout this paper, G D .V;E/ D .V .G/;E.G//

denotes a simple (without loops and multiple edges) graph (not necessarily connected) such that every edge has
length 1 and V ¤ ;. These properties guarantee that any connected component of any graph is a geodesic metric
space. Note that to exclude multiple edges and loops is not an important loss of generality, since [27, Theorems 8
and 10] reduce the problem of compute the hyperbolicity constant of graphs with multiple edges and/or loops to the
study of simple graphs.

If X is a geodesic metric space and x1; x2; x3 2 X , the union of three geodesics Œx1x2�, Œx2x3� and Œx3x1� is
a geodesic triangle that will be denoted by T D fx1; x2; x3g and we will say that x1; x2 and x3 are the vertices
of T ; it is usual to write also T D fŒx1x2�; Œx2x3�; Œx3x1�g. We say that T is ı-thin if any side of T is contained
in the ı-neighborhood of the union of the two other sides. We denote by ı.T / the sharp thin constant of T , i.e.
ı.T / WD inffı � 0 W T is ı-thin g : The space X is ı-hyperbolic .or satisfies the Rips condition with constant ı/
if every geodesic triangle in X is ı-thin. We denote by ı.X/ the sharp hyperbolicity constant of X , i.e. ı.X/ WD
supfı.T / W T is a geodesic triangle in X g: We say that X is hyperbolic if X is ı-hyperbolic for some ı � 0;
then X is hyperbolic if and only if ı.X/ < 1: If X has connected components fXi gi2I , then we define ı.X/ WD
supi2I ı.Xi /, and we say that X is hyperbolic if ı.X/ <1.

If we have a triangle with two identical vertices, we call it a bigon; note that since this is a special case of the
definition, every geodesic bigon in a ı-hyperbolic space is ı-thin.

In the classical references on this subject (see, e.g., [1, 2, 41]) appear several different definitions of Gromov
hyperbolicity, which are equivalent in the sense that if X is ı-hyperbolic with respect to one definition, then it is
ı0-hyperbolic with respect to another definition (for some ı0 related to ı). The definition that we have chosen has a
deep geometric meaning (see, e.g., [2]).

Trivially, any bounded metric space X is ..diamX/=2/-hyperbolic. A normed linear space is hyperbolic if
and only if it has dimension one. A geodesic space is 0-hyperbolic if and only if it is a metric tree. If a complete
Riemannian manifold is simply connected and its sectional curvatures satisfy K � c for some negative constant c,
then it is hyperbolic. See the classical references [1, 2, 41] in order to find further results.

We want to remark that the main examples of hyperbolic graphs are the trees. In fact, the hyperbolicity constant
of a geodesic metric space can be viewed as a measure of how “tree-like” the space is, since those spaces X with
ı.X/ D 0 are precisely the metric trees. This is an interesting subject since, in many applications, one finds that the
borderline between tractable and intractable cases may be the tree-like degree of the structure to be dealt with (see,
e.g., [42]).

Unauthenticated
Download Date | 2/5/18 3:41 AM



802 J.M. Rodríguez, J.M. Sigarreta

A graph is circulant if it has a cyclic group of automorphisms that includes an automorphism taking any vertex
to any other vertex. There are large classes of circulant graphs. For instance, every cycle graph, complete graph,
crown graph and Möbius ladder is a circulant graph. A complete bipartite graph is a circulant graph if and only if it
has the same number of vertices on both sides of its bipartition. A connected finite graph is circulant if and only if it
is the Cayley graph of a cyclic group, see [43]. Every circulant graph is a vertex transitive graph and a Cayley graph
[44]. It should be noted that Paley graphs is an important class of circulant graph, which is attracting great interest
in recent years (see, e.g., [45]).

The circulant is a natural generalization of the double loop network and was first considered by Wong and
Coppersmith [46]. Circulant graphs are interesting by the role they play in the design of networks. In the area of
computer networks, the standard topology is that of a ring network; that is, a cycle in graph theoretic terms. However,
cycles have relatively large diameter, and in an attempt to reduce the diameter by adding edges, we wish to retain
certain properties. In particular, we would like to retain maximum connectivity and vertex-transitivity. Hence, most of
the earlier research concentrated on using the circulant graphs to build interconnection networks for distributed and
parallel systems [47], [48]. The term circulant comes from the nature of its adjacency matrix. A matrix is circulant if
all its rows are periodic rotations of the first one. Circulant matrices have been employed for designing binary codes
[49]. Theoretical properties of circulant graphs have been studied extensively and surveyed [47].

For a finite graph with n vertices it is possible to compute ı.G/ in time O.n3:69/ [50] (this is improved in
[10, 51]). Given a Cayley graph (of a presentation with solvable word problem) there is an algorithm which allows to
decide if it is hyperbolic [52]. However, deciding whether or not a general infinite graph is hyperbolic is usually very
difficult. Therefore, it is interesting to relate hyperbolicity with other properties of graphs. The papers [24, 29, 40]
prove, respectively, that chordal, k-chordal and edge-chordal are hyperbolic. Moreover, in [24] it is shown that
hyperbolic graphs are path-chordal graphs. These results relating chordality and hyperbolicity are improved in [33].
In the same line, many researches have studied the hyperbolicity of other classes of graphs: complement of graphs
[53], vertex-symmetric graphs [54], line graphs [55], bipartite and intersection graphs [56], bridged graphs [32],
expanders [22], Cartesian product graphs [57], cubic graphs [58], and random graphs [37–39].

In this paper we prove that infinite circulant graphs and their complements are hyperbolic (see Theorems 2.3, 2.4
and 3.15). We obtain in Theorems 3.7 and 3.8 several sharp inequalities for the hyperbolicity constant of a large class
of infinite circulant graphs, and the precise value of the hyperbolicity constant of many circulant graphs. Besides,
Theorem 3.15 provides sharp bounds for the hyperbolicity constant of the complement of every infinite circulant
graph.

2 Every circulant graph is hyperbolic

Let .X; dX / and .Y; dY / be two metric spaces. A map f W X �! Y is said to be an .˛; ˇ/-quasi-isometric
embedding, with constants ˛ � 1; ˇ � 0 if for every x; y 2 X :

˛�1dX .x; y/ � ˇ � dY .f .x/; f .y// � ˛dX .x; y/C ˇ:

The function f is "-full if for each y 2 Y there exists x 2 X with dY .f .x/; y/ � ".
A map f W X �! Y is said to be a quasi-isometry, if there exist constants ˛ � 1; ˇ; " � 0 such that f is an

"-full .˛; ˇ/-quasi-isometric embedding.
A fundamental property of hyperbolic spaces is the following:

Theorem 2.1 (Invariance of hyperbolicity). Let f W X �! Y be an .˛; ˇ/-quasi-isometric embedding between the
geodesic metric spaces X and Y . If Y is ı-hyperbolic, then X is ı0-hyperbolic, where ı0 is a constant which just
depends on ˛; ˇ; ı.

Besides, if f is "-full for some " � 0 (a quasi-isometry) and X is ı-hyperbolic, then Y is ı0-hyperbolic, where
ı0 is a constant which just depends on ˛; ˇ; ı; ".

We denote by Aut.G/ the set of automorphisms of the graph G (isomorphisms of G onto itself). If g 2 Aut.G/ we
will denote by hgi the cyclic subgroup of Aut.G/ generated by g.
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Definition 2.2. Let G be any circulant connected infinite graph and g 2 Aut.G/ with hgi D Aut.G/. Consider the
graph G� with V.G�/ WD V.G/ and E.G�/ WD

˚
Œgn.v0/; gnC1.v0/�

	
n2Z for some fixed v0 2 V.G/. We define

n.G; g/ WD dG

�
v0; g.v0/

�
;

N.G; g/ WD max
˚
dG�.v

0; w/ j Œv0; w� 2 E.G/
	
:

Note that the definition of n.G; g/ and N.G; g/ do not depend on the choice of v0, since G is a circulant graph.
Hence, for every v 2 V.G/,

n.G; g/ D dG

�
v; g.v/

�
D dG

�
v; g�1.v/

�
;

N.G; g/ D max
˚
dG�.v; w/ j Œv; w� 2 E.G/

	
:

Theorem 2.3. Any circulant connected infinite graph G satisfies the inequality ı.G/ � c, where c is a constant
which just depends on n.G; g/ and N.G; g/.

Proof. For each n 2 Z, let wn be the midpoint of the edge Œgn.v0/; gnC1.v0/� 2 E.G�/. Let us define a map
i W G� ! G as follows: for each n 2 Z, let i.u/ WD gn.v0/ for every u 2 Œwn�1wn� n fwn�1g. Note that i is the
inclusion map on V.G�/ D V.G/; hence, i is .1=2/-full.

Fix u; v 2 V.G/ D V.G�/. Let u0 D u; u1; : : : ; uk�1; uk D v 2 V.G/ with dG.u; v/ DPk
jD1 dG.uj�1; uj / and Œuj�1; uj � 2 E.G/ for every 1 � j � k; then we have

dG�.u; v/ �

kX
jD1

dG�.uj�1; uj / �

kX
jD1

N.G; g/ dG.uj�1; uj / D N.G; g/ dG.u; v/:

Fix u; v 2 G� and a geodesic Œuv� in G�. Recall that i.u/; i.v/ 2 V.G/ D V.G�/. We have

dG�.u; v/ � dG�
�
u; i.u/

�
C dG�

�
i.u/; i.v/

�
C dG�

�
i.v/; v

�
� 1=2CN.G; g/ dG

�
i.u/; i.v/

�
C 1=2

D N.G; g/ dG

�
i.u/; i.v/

�
C 1;

1

N.G; g/
dG�.u; v/ � dG

�
i.u/; i.v/

�
C

1

N.G; g/
� dG

�
i.u/; i.v/

�
C 1:

Fix u; v 2 V.G/ D V.G�/. Let v0 D u; v1; : : : ; vr�1; vr D v 2 V.G/ with dG�.u; v/ D
Pr

jD1 dG�.vj�1; vj /

and Œvj�1; vj � 2 E.G
�/; then vj D g

i .vj�1/ for some i 2 f1;�1g and we have

dG.u; v/ �

rX
jD1

dG.vj�1; vj / D

rX
jD1

n.G; g/ dG�.vj�1; vj / D n.G; g/ dG�.u; v/:

Fix u; v 2 G�. We have

dG

�
i.u/; i.v/

�
� n.G; g/ dG�

�
i.u/; i.v/

�
� n.G; g/

�
dG�

�
i.u/; u

�
C dG�.u; v/C dG�

�
v; i.v/

��
� n.G; g/

�
1=2C dG�.u; v/C 1=2

�
D n.G; g/ dG�.u; v/C n.G; g/:

We conclude that i is a .1=2/-full
�
maxfN.G; g/; n.G; g/g; n.G; g/

�
-quasi-isometry and Theorem 2.1 gives the

result, since G� is 0-hyperbolic.

Theorem 2.4. Every circulant graph is hyperbolic.

Proof. Let us consider any fixed circulant graph G. If G is a finite graph, then it is .diamG/-hyperbolic. Assume
now that G is an infinite graph.

If G is connected, then Theorem 2.3 gives that it is hyperbolic.
If G is not connected, then it has just a finite number of isomorphic connected components G1; : : : ; Gr ; since

G is a circulant graph; therefore, ı.G/ D max
˚
ı.G1/; : : : ; ı.Gr /

	
D ı.G1/. Since G1 is connected and circulant,

Theorem 2.3 gives the result.
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3 Bounds for the hyperbolicity constant of infinite circulant graphs

Let fa1; a2; : : : ; akg be a set of integers such that 0 < a1 < � � � < ak . We define the circulant graphC1.a1; : : : ; ak/

as the infinite graph with vertices Z and such that N.j / D fj ˙ai g
k
iD1

is the set of neighbors of each vertex j 2 Z.
Then C1.a1; : : : ; ak/ is a regular graph of degree 2k. If k D 1, then C1.1/ is isometric to the Cayley graph of Z,
which is 0-hyperbolic. Hence, in what follows we just consider circulant graphs with k > 1.

Denote by J.G/ the set of vertices and midpoints of edges in G, and by btc the lower integer part of t .
The following results in [25] will be useful.

Theorem 3.1 ([25, Theorem 2.6]). For every hyperbolic graph G, ı.G/ is a multiple of 1=4.

As usual, by cycle we mean a simple closed curve, i.e., a path with different vertices, unless the last one, which is
equal to the first vertex.

Theorem 3.2 ([25, Theorem 2.7]). For any hyperbolic graph G, there exists a geodesic triangle T D fx; y; zg that
is a cycle with x; y; z 2 J.G/ and ı.T / D ı.G/.

We also need the following technical lemmas.

Lemma 3.3. For any integers k > 1 and 1 < a2 < � � � < ak , consider G D C1.1; a2; : : : ; ak/. Then the following
statements are equivalent:
.1/ dG

�
0;
�
ak=2

˘�
D
�
ak=2

˘
and, if ak is odd, then dG

�
0;
�
ak=2

˘
C 1

�
�
�
ak=2

˘
.

.2/ a2 � ak � 1.

.3/ We have either k D 2 or k D 3 and a2 D a3 � 1.

Proof. Assume that .1/ holds. If k D 2, then .2/ holds; hence, we can assume k � 3. Define r WD
�
ak=2

˘
. If

a2 � r , then r D dG.0; r/ by hypothesis and r D dG.0; r/ � dG.0; a2/C dG.a2; r/ � 1C r � a2 < r , which is
a contradiction. Thus we conclude a2 > r . Therefore,

r D dG.0; r/ � dG.0; a2/C dG.a2; r/ � 1C a2 � r;

and a2 � 2r � 1. Hence, a2 � ak � 1 if ak is even. Since a2 > r , if ak is odd, then

r � dG.0; r C 1/ � dG.0; a2/C dG.a2; r C 1/ � 1C a2 � .r C 1/;

and a2 � 2r D ak � 1. Then .2/ holds.
A simple computation provides the converse implication.
The equivalence of .2/ and .3/ is elementary.

Let us define the subset E of infinite circulant graphs as E WD
˚
C1.1; 2mC 1; 2mC 2; 2mC 3/

	
m�1

.

Lemma 3.4. Consider any integers k > 1 and 1 < a2 < � � � < ak with a2 < ak�1, andG D C1.1; a2; : : : ; ak/ …

E . Then
min

˚
dG.0; u/; dG.aj ; u/

	
�

jak

2

k
� 1; (1)

for every u 2 Z with 0 � u � aj and 1 � j � k.

Proof. Since a2 < ak � 1, Lemma 3.3 gives:
.i/ if ak is even, then dG

�
0;
�
ak=2

˘�
<
�
ak=2

˘
,

.i i/ if ak is odd, then dG

�
0;
�
ak=2

˘�
<
�
ak=2

˘
or dG

�
0;
�
ak=2

˘
C 1

�
<
�
ak=2

˘
.

If dG

�
0;
�
ak=2

˘�
<

�
ak=2

˘
, then inequality (1) trivially holds. Hence, we can assume that ak is odd,

dG

�
0;
�
ak=2

˘�
D
�
ak=2

˘
and dG

�
0;
�
ak=2

˘
C 1

�
<
�
ak=2

˘
. These facts imply that dG

�
0;
�
ak=2

˘
C 1

�
D�

ak=2
˘
� 1.

Unauthenticated
Download Date | 2/5/18 3:41 AM



The hyperbolicity constant of infinite circulant graphs 805

If a2 �
�
ak=2

˘
, then dG

�
0;
�
ak=2

˘�
<
�
ak=2

˘
, which is a contradiction. Therefore, a2 >

�
ak=2

˘
andjak

2

k
� 1 D dG

�
0;
jak

2

k
C 1

�
� 1C a2 �

jak

2

k
� 1; ak � 2 � a2 < ak � 1:

We conclude a2 D ak � 2, and k D 3 or k D 4. If k D 4, then a2 D a4 � 2, a3 D a4 � 1 and G 2 E , since ak is
odd. This is a contradiction, and we conclude k D 3 and a2 D a3 � 2.

If j D 1, then min
˚
dG.0; u/; dG.1; u/

	
D 0 for every 0 � u � 1.

If j D 2, then for every 0 � u � a2

min
˚
dG.0; u/; dG.a2; u/

	
� min

˚
u; a2 � u

	
�

ja2

2

k
D

ja3

2

k
� 1:

If j D 3, then dG

��
a3=2

˘
; a3

�
D dG

�
0;
�
a3=2

˘
C 1

�
D
�
a3=2

˘
� 1, and for every 0 � u � a3 with u ¤�

a3=2
˘
;
�
a3=2

˘
C 1,

min
˚
dG.0; u/; dG.a3; u/

	
� min

˚
u; a3 � u

	
�

ja3

2

k
� 1:

This finishes the proof.

Proposition 3.5. Consider any integers k > 1 and 1 < a2 < � � � < ak . If we have either k D 2, or k D 3 and
a2 D a3 � 1, or C1.1; a2; : : : ; ak/ 2 E , then

ı
�
C1.1; a2; : : : ; ak/

�
�
1

2
C

jak

2

k
:

Proof. Define r WD
�
ak=2

˘
and G WD C1.1; a2; : : : ; ak/.

Assume first that we have either k D 2, or k D 3 and a2 D a3 � 1. Consider the curves 
1; 
2 in G joining
x WD 0 and y WD r C .r C 1/ak given by


1 WD Œ0; 1� [ Œ1; 2� [ � � � [ Œr � 1; r� [ Œr; r C ak � [ Œr C ak ; r C 2ak � [ � � � [ Œr C rak ; r C .r C 1/ak �;


2 WD Œ0; ak � [ Œak ; 2ak � [ � � � [ Œrak ; .r C 1/ak � [ Œ.r C 1/ak ; .r C 1/ak C 1� [ � � �

� � � [ Œ.r C 1/ak C 1; .r C 1/ak C 2� [ Œr C .r C 1/ak � 1; r C .r C 1/ak �:

Lemma 3.3 gives that 
1 and 
2 are geodesics; then dG.x; y/ D L.
1/ D L.
2/ D 2r C 1. Let T be the geodesic
bigon T D f
1; 
2g in G. If p is the midpoint of Œr; r C ak �, then dG.p; x/ D dG.p; y/ D r C 1=2 and Lemma 3.3
gives that dG.p; 
2/ D r C 1=2. Hence,

ı
�
C1.1; a2; : : : ; ak/

�
� dG.p; 
2/ D

1

2
C

jak

2

k
:

Assume now that C1.1; a2; : : : ; ak/ 2 E . Note that rCrak D .rC1/ak�1, since ak D ak�1C1 is odd. Consider
the curves 
1; 
2; 
3 in G


1 WD Œ�r � rak ;�r � .r � 1/ak � [ � � � [ Œ�r � 2ak ;�r � ak � [ Œ�r � ak ;�r� [ Œ�r; r�

[ Œr; r C ak � [ Œr C ak ; r C 2ak � [ � � � [ Œr C .r � 1/ak ; r C rak �;


2 WD Œ�.r C 1/ak�1;�rak�1� [ � � � [ Œ�2ak�1;�ak�1� [ Œ�ak�1; 0�;


3 WD Œ0; ak�1� [ Œak�1; 2ak�1� [ � � � [ Œrak�1; .r C 1/ak�1�;

joining x WD �.r C 1/ak�1, y WD .r C 1/ak�1 and z WD 0. One can check that 
1, 
2 and 
3 are geodesics in
G. Let T be the geodesic triangle T D f
1; 
2; 
3g. Note that dG.0; r/ D r , since G 2 E . Therefore, if p is the
midpoint of Œ�r; r�, then

ı.G/ � dG.p; 
2 [ 
3/ D
1

2
C dG.r; 
3/ D

1

2
C dG.r; f0; 2rg/ D

1

2
C r D

1

2
C

jak

2

k
:

Let G D C1.1; a2; : : : ; ak/. If x 2 V.G/, we define x1 WD x2 WD x; if x 2 G n V.G/, we define x1 and x2 as the
endpoints of the edge containing x with x1 < x2. Therefore, 1 � x2 � x1 � ak if x 2 G n V.G/. If x; y 2 J.G/,
we say that xLy if x D y or x2 � y1, and x and y are related (and we write xR y) if xLy or yLx. Note that L is
an order relation on J.G/.
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Lemma 3.6. Consider any integers k > 1 and 1 < a2 < � � � < ak . If x; y 2 J
�
C1.1; a2; : : : ; ak/

�
and x and y

are not related, then
dG.x; y/ � 1C

jak

2

k
:

Furthermore, if a2 < ak � 1 and C1.1; a2; : : : ; ak/ … E , then

dG.x; y/ �
jak

2

k
:

Proof. Let G D C1.1; a2; : : : ; ak/. If x1 � y1 � y2 � x2, then the cycle

� WD Œx1; x1 C 1� [ Œx1 C 1; x1 C 2�[ � � � [ Œy1 � 1; y1� [ Œy1; y2� [ Œy2; y2 C 1�[

� � � [ Œx2 � 2; x2 � 1� [ Œx2 � 1; x2� [ Œx2; x1�

has length at most 1C ak . Since � is a cycle containing the points x and y, we have

dG.x; y/ �
1

2
L.�/ �

1C ak

2
� 1C

jak

2

k
:

If a2 < ak � 1 and G … E , then Lemma 3.4 gives dG.x; y1/ � 1=2 C
�
ak=2

˘
� 1 D

�
ak=2

˘
� 1=2 and

dG.x; y/ �
�
ak=2

˘
.

If y1 � x1 � x2 � y2, then the same argument gives these inequalities.
If x1 � y1 < x2 � y2, then x2�y1Cy1�x1 � ak and minfx2�y1; y1�x1g � bak=2c. If x2�y1 � bak=2c,

then dG.x; y/ � dG.x; x2/ C x2 � y1 C dG.y1; y/ � 1 C bak=2c. If y1 � x1 � bak=2c, then dG.x; y/ �

dG.x; x1/C y1 � x1 C dG.y1; y/ � 1C bak=2c. If a2 < ak � 1 and C1.1; a2; : : : ; ak/ … E , then Lemma 3.4
also gives dG.x; y1/ �

�
ak=2

˘
� 1=2 and dG.x; y/ �

�
ak=2

˘
.

If y1 � x1 < y2 � x2, then the same argument gives these inequalities.

We can state now the main result of this section, which provides a sharp upper bound for the hyperbolicity constant
of infinite circulant graphs.

Theorem 3.7. For any integers k > 1 and 1 < a2 < � � � < ak ,

ı
�
C1.1; a2; : : : ; ak/

�
�
1

2
C

jak

2

k
;

and the equality is attained if and only if we have either k D 2, or k D 3 and a2 D a3 � 1, or k D 4, a2 D a4 � 2,
a3 D a4 � 1 and a4 is odd.

Proof. In order to bound ı.G/ with G D C1.1; a2; : : : ; ak/, let us consider a geodesic triangle T D fx; y; zg in G
and p 2 Œxy�; by Theorem 3.2 we can assume that T is a cycle with x; y; z 2 J.G/. We consider several cases.

.A/ If x and y are not related, then Lemma 3.6 gives

dG.p; Œxz� [ Œyz�/ � dG.p; fx; yg/ �
1

2
dG.x; y/ �

1

2
C
1

2

jak

2

k
: (2)

.B/ Assume that xR y. Without loss of generality we can assume that xLy. Denote by w1; : : : ; wm the vertices in
Œxy� such that w1 2 fx1; x2g, wm 2 fy1; y2g and dG.wj ; wjC1/ D 1 for every 1 � j < m; we define

i0 WD minf1 � i � m j wj � x2 8 i � j � mg; x0 WD wi0
:

.B:1/ Assume that either x 2 V.G/ or x is the midpoint of an edge Œr; r C 1� 2 E.G/ for some r 2 Z. If x0 D x2,
then L.Œxx0�/ � 1=2. If x0 > x2, then the cycle

� WD Œwi0
; wi0�1� [ Œwi0�1; wi0�1 C 1� [ Œwi0�1 C 1;wi0�1 C 2� [ � � � [ Œwi0

� 2;wi0
� 1� [ Œwi0

� 1;wi0
�

has length at most 1C ak . Since x 2 V.G/ or x is the midpoint of an edge Œr; r C 1�, thus � is a cycle containing
the points x and x0, and we have

L.Œxx0�/ D dG.x; x0/ �
1

2
L.�/ �

1C ak

2
<
3

2
C

jak

2

k
:
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.B:2/ Assume now that x is the midpoint of an edge Œr; rCaj � 2 E.G/ for some r 2 Z and 1 < j � k. If x0 D x2,
then L.Œxx0�/ D 1=2. If wi0�1 D x1, then L.Œxx0�/ D 3=2. If x0 > x2 and wi0�1 ¤ x1, then we have either
wi0�1 < x1 < x2 < wi0

or x1 < wi0�1 < x2 < wi0
. In the first case the cycle

� WD Œwi0
; wi0�1� [ Œwi0�1; wi0�1 C 1� [ � � � [ Œx1 � 1; x1� [ Œx1; x2� [ Œx2; x2 C 1� [ � � � [ Œwi0

� 1;wi0
�

has length at most ak . Since � is a cycle containing the points x and x0, we have

L.Œxx0�/ D dG.x; x0/ �
1

2
L.�/ �

ak

2
:

Assume that x1 < wi0�1 < x2 < wi0
. Then

L.Œxx0�/ D dG.x; x0/ �
1

2
CminfdG.x2; wi0�1/; dG.wi0�1; x1/g C 1

�
3

2
Cminfx2 � wi0�1; wi0�1 � x1g �

3

2
C

jak

2

k
:

Therefore, in Case .B/, if p 2 Œxx0� n B.x0; 3=4/, then

dG.p; Œxz� [ Œyz�/ � dG.p; x/ � L
�
Œxx0� n B.x0; 3=4/

�
D L

�
Œxx0�

�
�
3

4
�
3

4
C

jak

2

k
: (3)

Define
j0 WD maxf1 � i � m j wj � y1 8 1 � j � ig; y0 WD wj0

:

A similar argument to the previous one shows that if p 2 Œy0y� n B.y0; 3=4/, then

dG.p; Œxz� [ Œyz�/ �
3

4
C

jak

2

k
: (4)

Since T is a continuous curve, we have�
Œxz� [ Œyz�

�
\ fx1; x2g ¤ ;;

�
Œxz� [ Œyz�

�
\ fy1; y2g ¤ ;:

.a/ Assume that y0 2 Œxx0� n fx0g.

.a:1/ If dG.x0; y0/ � 2, then

L.Œxy�/ D L.Œxx0�/C L.Œy0y�/ � L.Œy0x0�/ �
3

2
C

jak

2

k
C
3

2
C

jak

2

k
� 2 D 1C 2

jak

2

k
;

dG.p; Œxz� [ Œyz�/ � dG.p; fx; yg/ �
1

2
L
�
Œxy�

�
�
1

2
C

jak

2

k
:

.a:2/ If dG.x0; y0/ D 1, then wj0
D y0 D wi0�1, wi0

D x0 D wj0C1 and the definitions of x0 and y0 give
y0 < x2 � x0 and y0 � y1 < x0. Since Œx0; y0� 2 E.G/,

dG.x2; y1/ �
1C ak

2
;

L
�
Œxy�

�
D dG.x; y/ � dG.x; x2/C dG.x2; y1/C dG.y1; y/ �

1

2
C
1C ak

2
C
1

2
D
3C ak

2
;

dG.p; Œxz� [ Œyz�/ � dG.p; fx; yg/ �
1

2
L
�
Œxy�

�
�
3C ak

4
�
1

2
C

jak

2

k
:

.b/ Assume that y0 … Œxx0� n fx0g. Since x2 � x0; y0 � y1 and Œxz�[ Œyz� is a continuous curve joining x and y,
if p 2 V.G/ \ Œx0y0� � Œxy�, then there exist u; v 2 V.G/ \

�
Œxz� [ Œyz�

�
with Œu; v� 2 E.G/ and u � p � v.

Since T is a cycle, we have

dG.p; Œxz� [ Œyz�/ � dG.p; fu; vg/ � minfp � u; v � pg �
jak

2

k
:

Therefore, if p 2 Œx0y0� [ B.x0; 3=4/ [ B.y0; 3=4/, then

dG.p; Œxz� [ Œyz�/ <
3

4
C

jak

2

k
:
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This inequality, (2), (3) and (4) give

ı
�
C1.1; a2; : : : ; ak/

�
�
3

4
C

jak

2

k
: (5)

By Theorem 3.1, in order to finish the proof it suffices to show that the equality in (5) is not attained. Seeking for a
contradiction, assume that the equality is attained. The proof of (5) gives that we have

dG.p; Œxz� [ Œyz�/ D
3

4
C

jak

2

k
;

where p is the point in Œxx0� with dG.p; x0/ D 3=4 or the point in Œy0y� with dG.p; y0/ D 3=4. By symmetry,
without loss of generality we can assume that p is the point in Œxx0� with dG.p; x0/ D 3=4; thus dG.p;wi0�1/ D

1=4. Therefore, we are in Case .B:2/ with x1 < wi0�1 < x2 < wi0
and

L.Œxx0�/ D
3

2
CminfdG.x2; wi0�1/; dG.wi0�1; x1/g D

3

2
Cminfx2 � wi0�1; wi0�1 � x1g D

3

2
C

jak

2

k
:

Then
minfdG.x2; wi0�1/; dG.wi0�1; x1/g D minfx2 � wi0�1; wi0�1 � x1g D

jak

2

k
;

and we conclude jak

2

k
� x2 � wi0�1; wi0�1 � x1 �

jak

2

k
C 1: (6)

.I / Assume that x2 2 Œxx0�. Since T is a cycle, then x1 2 Œxz�[ Œyz� and x1 < wi0�1. Hence, since Œxz�[ Œyz� is
a continuous curve joining x and y, and dG.p;wi0�1/ D 1=4, we obtain as above

3

4
C

jak

2

k
D dG.p; Œxz� [ Œyz�/ � dG.p;wi0�1/C dG.wi0�1; Œxz� [ Œyz�/ �

1

4
C

jak

2

k
;

which is a contradiction.

.II / Assume that x1 2 Œxx0�.

.II:1/ If x2 � x1 D x0 � wi0�1 D ak , then wi0�1 � x1 D x0 � x2, dG.x1; wi0�1/ D dG.x2; x0/ and

dG.x; x0/ D dG.x; x1/C dG.x1; wi0�1/C dG.wi0�1; x0/ > dG.x; x1/C dG.x1; wi0�1/

D
1

2
C dG.x2; x0/ D dG.x; x2/C dG.x2; x0/ � dG.x; x0/;

which is a contradiction.

.II:2/ If x2 � x1 < ak , then (6) gives

x2 � wi0�1 D wi0�1 � x1 D

jak

2

k
;

and

3

4
C

jak

2

k
D dG.p; Œxz� [ Œyz�/ � dG.p; x2/ � dG.p;wi0�1/C dG.wi0�1; x2/ �

1

4
C

jak

2

k
;

which is a contradiction.

.II:3/ Assume x2 � x1 D ak and x0 � wi0�1 < ak . Since x1 2 Œxx0�, we have wi0�1 � x1 D
�
ak=2

˘
.

.II:3:1/ If x2 � wi0�1 D
�
ak=2

˘
, then

3

4
C

jak

2

k
D dG.p; Œxz� [ Œyz�/ � dG.p; x2/ � dG.p;wi0�1/C dG.wi0�1; x2/ �

1

4
C

jak

2

k
;

which is a contradiction.

.II:3:2/ If x2 � wi0�1 D
�
ak=2

˘
C 1, then ak D x2 � x1 D 2

�
ak=2

˘
C 1 and

dG.x0; x2/ � x0 � x2 D x0 � wi0�1 �
�
x2 � wi0�1

�
< ak �

jak

2

k
� 1 D

jak

2

k
;

3

4
C

jak

2

k
D dG.p; Œxz� [ Œyz�/ � dG.p; x2/ � dG.p; x0/C dG.x0; x2/ <

3

4
C

jak

2

k
;
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which is a contradiction.
This finishes the proof of the inequality.
If we have either k D 2, or k D 3 and a2 D a3 � 1, or k D 4, a2 D a4 � 2, a3 D a4 � 1 and a4 is odd, then

Proposition 3.5 gives

ı
�
C1.1; a2; : : : ; ak/

�
�
1

2
C

jak

2

k
:

Since we have the converse inequality, we conclude that the equality holds.
Assume now that the equality holds. Denote byG the circulant graph C1.1; a2; : : : ; ak/. By Theorem 3.2 there

exist a geodesic triangle T D fx; y; zg in G that is a cycle with x; y; z 2 J.G/; and p 2 Œxy� with dG.p; Œxz� [

Œyz�/ D 1=2C
�
ak=2

˘
. Hence, p 2 J.G/.

Seeking for a contradiction, assume that a2 < ak � 1 and that G … E .
If x and y are not related, then Lemma 3.6 gives dG.x; y/ �

�
ak=2

˘
. Since dG.x; y/ D dG.x; p/ C

dG.p; y/ � 1 C 2
�
ak=2

˘
, thus x and y are related, and without loss of generality we can assume xLy. Since

dG.p; x/; dG.p; y/ � 1=2C
�
ak=2

˘
, the previous argument gives that x and p are related, and p and y are related.

.i/ Assume first xLp and pLy.
Since p1 � x1 � p1 � x2 � dG.x2; p1/ �

�
ak=2

˘
� 1=2, we have p1 � x1 � p1 � x2 �

�
ak=2

˘
, and

there is some point u 2 .Œxz� [ Œyz�/ \ V.G/ with u � p1. A similar argument gives that there is some point
v 2 .Œxz�[ Œyz�/\V.G/ with p2 � v. Denote by u and v any couple of vertices satisfying these properties. We are
going to prove that v � u > ak .

If p 2 V.G/, then

min
˚
p � u; v � p

	
� min

˚
dG.u; p/; dG.p; v/

	
�
1

2
C

jak

2

k
;

min
˚
p � u; v � p

	
� 1C

jak

2

k
; v � u � 2C 2

jak

2

k
> ak :

If p is the midpoint of some edge Œm;m C aj � with m 2 Z and 2 � j � k, then Lemma 3.4 gives dG.p;w/ ��
ak=2

˘
�1=2 < 1=2C

�
ak=2

˘
for everyw 2 Z withm � w � mCaj , since a2 < ak�1 andG … E . Furthermore,

min
˚
m � u; v �m � aj

	
� min

˚
dG.u;m/; dG.mC aj ; v/

	
�

jak

2

k
;

v � u � aj C 2
jak

2

k
� 2C 2

jak

2

k
> ak :

Finally, assume that p is the midpoint of some edge Œm;m C 1� with m 2 Z. By Lemma 3.3, we have
dG

�
0;
�
ak=2

˘�
�
�
ak=2

˘
� 1 or dG

�
0;
�
ak=2

˘
C 1

�
�
�
ak=2

˘
� 1. Therefore,

dG

�
p; p ˙

�jak

2

k
C
1

2

��
�

jak

2

k
�
1

2
; min

˚
p � u; v � p

	
�
3

2
C

jak

2

k
;

v � u � 3C 2
jak

2

k
� 2C 2

jak

2

k
> ak :

Hence, we have proved v � u > ak in every case.
Since if p is the midpoint of some edge Œm;mCaj �withm 2 Z and 2 � j � k then dG.p;w/ < 1=2C

�
ak=2

˘
for every w 2 Z with m � w � m C aj , and Œxz� [ Œyz� is a continuous curve joining u and v, there exist
u0; v0 2 .Œxz�[ Œyz�/\ V.G/ with u0 � p1, p2 � v0 and Œu0; v0� 2 E.G/. Hence, ak � v0 � u0 > ak , which is
a contradiction.

.i i/ Assume now that pLx or yLp. By symmetry, we can assume that pLx and thus p 2 Œxx0� and
dG.p; x0/ � 1. Since dG.x; x0/ � 3=2C

�
ak=2

˘
, we have 1=2C

�
ak=2

˘
D dG

�
p; Œxz� [ Œyz�

�
� dG.x; p/ �

1=2 C
�
ak=2

˘
. Therefore, dG.x; p/ D 1=2 C

�
ak=2

˘
, dG.p; x0/ D 1, p 2 V.G/ and x is the midpoint of

Œx1; x2� 2 E.G/. Thus dG.p; x1/ �
�
ak=2

˘
, dG.p; x2/ �

�
ak=2

˘
and p � x1 � x2 � x0. By Lemma 3.3, we

have dG

�
0;
�
ak=2

˘�
�
�
ak=2

˘
� 1 or dG

�
0;
�
ak=2

˘
C 1

�
�
�
ak=2

˘
� 1.

If dG

�
0;
�
ak=2

˘�
�
�
ak=2

˘
� 1, then x1 �

�
ak=2

˘
C 1, x2 � ak �

��
ak=2

˘
� 1

�
and

1 � x2 � x1 � ak �
��
ak=2

˘
� 1

�
�
�
ak=2

˘
� 1 D ak � 2

�
ak=2

˘
� 0;

which is a contradiction.
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If dG

�
0;
�
ak=2

˘
C1

�
�
�
ak=2

˘
�1, then x2 �

�
ak=2

˘
, x1 �

�
ak=2

˘
and 1 � x2�x1 �

�
ak=2

˘
�
�
ak=2

˘
�

0, which is a contradiction.
Therefore, we conclude in every case that a2 � ak � 1 or G 2 E . Hence, Lemma 3.3 gives k D 2, or k D 3

and a2 D a3 � 1, or k D 4, a2 D a4 � 2, a3 D a4 � 1 and a4 is odd.

We also have a sharp lower bound for the hyperbolicity constant.

Theorem 3.8. For any integers k > 1 and 1 < a2 < � � � < ak we have

ı
�
C1.1; a2; : : : ; ak/

�
�
3

2
;

and the equality is attained if ak D k.

Proof. Define G D C1.1; a2; : : : ; ak/, and consider the geodesics 
1; 
2 in G given by


1 WD Œ0; ak � [ Œak ; 2ak � [ Œ2ak ; 2ak C 1�;


2 WD Œ0; 1� [ Œ1; 1C ak � [ Œ1C ak ; 1C 2ak �:

Let T be the geodesic bigon T D f
1; 
2g in G. If p is the midpoint of Œak ; 2ak �, then

ı.G/ � dG.p; 
2/ D min
n
dG.p; ak/C dG.ak ; 1C ak/; dG.p; 2ak/C dG.2ak ; 2ak C 1/;

1

2
L.
1/

o
D
3

2
:

Assume now that ak D k, i.e., G D C1.1; a2; : : : ; ak/ D C1.1; 2; : : : ; k/. Therefore, dG.m;m C w/ D 1

for every m;w 2 Z with jwj � k. Note that if x; y 2 J.G/ and x and y are not related, then jx1 � y1j < k,
dG.x1; y1/ D 1 and

dG.x; y/ � dG.x; x1/C dG.x1; y1/C dG.y1; y/ D 2: (7)

Let us consider a geodesic triangle T D fx; y; zg in G and p 2 Œxy�; by Theorem 3.2 we can assume that T is a
cycle with x; y; z 2 J.G/. We consider several cases.

.A/ If x and y are not related, then (7) gives

dG.p; Œxz� [ Œyz�/ � dG.p; fx; yg/ �
1

2
dG.x; y/ � 1:

.B/ Assume that xR y. Without loss of generality we can assume that xLy. Define wj , i0, x0 and y0 as in the proof
of Theorem 3.7. Then wi0�1 < x2 � wi0

D x0.
If x0 D x2, then L.Œxx0�/ � 1=2. If x0 > x2, then wi0�1 < x2 < wi0

. Since x2 � wi0
� wi0

� wi0�1 � k,
dG.x2; x0/ D 1 and

L.Œxx0�/ D dG.x; x0/ � dG.x; x2/C dG.x2; x0/ �
1

2
C 1 D

3

2
:

Therefore, in both cases, if p 2 Œxx0�, then

dG.p; Œxz� [ Œyz�/ � dG.p; x/ � L
�
Œxx0�

�
�
3

2
:

A similar argument to the previous one shows that if p 2 Œy0y�, then dG.p; Œxz�[ Œyz�/ � 3=2. If y0 2 Œxx0�, then
dG.p; Œxz� [ Œyz�/ � 3=2 holds for every p 2 Œxy�. Consider now the case y0 … Œxx0�.

Since x2 � x0 and y0 � y1, every p 2 V.G/ \ Œx0y0� � Œxy� verifies x2 � p � y1. Since T is a continuous
curve, we obtain �

Œxz� [ Œyz�
�
\ fx1; x2g ¤ ;;

�
Œxz� [ Œyz�

�
\ fy1; y2g ¤ ;:

Since Œxz� [ Œyz� is a continuous curve joining x and y, if p 2 V.G/ \ Œx0y0�, then there exist u; v 2 V.G/ \�
Œxz� [ Œyz�

�
with Œu; v� 2 E.G/ and u � p � v. Hence, p � u � v � u � k, v � p � v � u � k and

dG.p; Œxz� [ Œyz�/ � dG.p; fu; vg/ D 1:
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Therefore, if p 2 Œx0y0�, then

dG.p; Œxz� [ Œyz�/ �
3

2
:

These inequalities give ı.T / � 3=2 and, hence,

ı
�
C1.1; 2; : : : ; k/

�
�
3

2
:

Since we have proved the converse inequality, we conclude that the equality holds.

As usual, the complement G of the graph G is defined as the graph with V
�
G
�
D V.G/ and such that e 2 E

�
G
�

if
and only if e … E.G/. We are going to bound the hyperbolicity constant of the complement of every infinite circulant
graph. In order to do it, we need some preliminaries.

For any graph G, we define,

diamV.G/ WD sup
˚
dG.v; w/j v;w 2 V.G/

	
;

diamG WD sup
˚
dG.x; y/j x; y 2 G

	
:

We need the following well-known result (see a proof, e.g., in [36, Theorem 8]).

Theorem 3.9. In any graph G the inequality ı.G/ � .diamG/=2 holds.

We have the following direct consequence.

Corollary 3.10. In any graph G the inequality ı.G/ � .diamV.G/C 1/=2 holds.

From [34, Proposition 5 and Theorem 7] we deduce the following result.

Lemma 3.11. Let G be any graph with a cycle g. If L.g/ � 3, then ı.G/ � 3=4. If L.g/ � 4, then ı.G/ � 1.

We say that a vertex v of a graph G is a cut-vertex if G n fvg is not connected. A graph is two-connected if it does
not contain cut-vertices.

We need the following result in [26, Proposition 4.5 and Theorem 4.14].

Theorem 3.12. Assume that G is a two-connected graph. Then G verifies ı.G/ D 1 if and only if diamG D 2.
Furthermore, ı.G/ � 1 if and only if diamG � 2.

Definition 3.13. Let us consider integers k � 1 and 1 � a1 < a2 < � � � < ak . We say that fa1; a2; : : : ; akg

is a 1-modulated sequence if for every x; y 2 Z with jyj … fa1; a2; : : : ; akg we have jxj … fa1; a2; : : : ; akg or
jx � yj … fa1; a2; : : : ; akg.

We have the following sharp bounds for the hyperbolicity constant of the complement of every infinite circulant
graph. In particular, they show that the complement of infinite circulant graphs are hyperbolic.

Theorem 3.14. For any integers k � 1 and 1 � a1 < a2 < � � � < ak we have

1 � ı
�
C1.a1; a2; : : : ; ak/

�
�
3

2
:

Furthermore, ı
�
C1.a1; a2; : : : ; ak/

�
D 1 if and only if fa1; a2; : : : ; akg is 1-modulated. If there is 1 � j < ak=5

with j; 5j … fa1; a2; : : : ; akg and 2j; 3j; 4j 2 fa1; a2; : : : ; akg, then ı
�
C1.a1; a2; : : : ; ak/

�
D 3=2.

Proof. Define G WD C1.a1; a2; : : : ; ak/. Given u; v 2 Z; consider w 2 Z with w > u C ak and w > v C ak .
Since Œu; w�; Œv; w� … E.G/, we have Œu; w�; Œv; w� 2 E

�
G
�

and dG.u; v/ � dG.u;w/C dG.w; v/ D 2. Hence,
diamV

�
G
�
� 2 and Corollary 3.10 gives ı

�
G
�
� 3=2.
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Since Œ0; ak C 1�; Œak C 1; 2ak C 2�; Œ2ak C 2; 3ak C 3�; Œ3ak C 3; 0� … E.G/, we have Œ0; ak C 1�; Œak C

1; 2ak C 2�; Œ2ak C 2; 3ak C 3�; Œ3ak C 3; 0� 2 E
�
G
�
. Since the cycle C WD f0; ak C 1; 2ak C 2; 3ak C 3; 0g in

G has length 4, Lemma 3.11 gives ı
�
G
�
� 1.

SinceG is a circulant graph, the sequence fa1; a2; : : : ; akg is 1-modulated if and only if for every x; y1; y2 2 Z
with jy2�y1j … fa1; a2; : : : ; akg, we have jx�y1j … fa1; a2; : : : ; akg or jx�y2j … fa1; a2; : : : ; akg. This happens
if and only if dG.x; Œy1; y2�/ � 1 for every x 2 V

�
G
�

and Œy1; y2� 2 E
�
G
�
, and this condition is equivalent to

diamV
�
G
�
� 2. Since G is a two-connected graph, Theorem 3.12 that diamG � 2 if and only if ı

�
G
�
� 1. Since

ı
�
G
�
� 1, we conclude that ı

�
G
�
D 1 if and only if fa1; a2; : : : ; akg is 1-modulated.

Assume that there is 1 � j < ak=5 with j; 5j … fa1; a2; : : : ; akg and 2j; 3j; 4j 2 fa1; a2; : : : ; akg, and
consider the cycle C WD f0; j; 2j; 3j; 4j; 5j; 0g inG with length 6. Let x and y be the midpoints of the edges Œ2j; 3j �
and Œ5j; 0�, respectively. Since dG.Œ2j; 3j �; Œ5j; 0�/ D 2, dG.x; y/ D 3 and C contains two geodesics g1; g2 joining
x and y, with g1 \ V

�
G
�
D f0; j; 2j g and g2 \ V

�
G
�
D f3j; 4j; 5j g. Since dG.j; f3j; 4j; 5j g/ � 2, we have

ı
�
G
�
� dG.j; g2/ D dG.j; fx; yg/ D 3=2, and we conclude ı

�
G
�
D 3=2.

Since Paley graphs is an important class of circulant graph, which is attracting great interest in recent years (see, e.g.,
[45]), we finish this paper with a result on the hyperbolicity constant of Paley graphs.

Recall that the Paley graph of order q with q a prime power is a graph on q nodes, where two nodes are adjacent
if their difference is a square in the finite field GF.q/. This graph is circulant when q � 1.mod 4/. Paley graphs are
self-complementary, strongly regular, conference graphs, and Hamiltonian.

Proposition 3.15. For any Paley graph G we have

1 � ı.G/ �
3

2
:

Proof. Let us denote by n the cardinality of V.G/.
Since Paley graphs are self-complementary (the complement of any Paley graph is isomorphic to it), the degree

of any vertex is .n � 1/=2. Hence, given u; v 2 V.G/ with Œu; v� … E.G/, there exists a vertex w 2 V.G/ with
dG.u;w/ D dG.u; v/ D 1, and we conclude that diamV.G/ � 2. Therefore, Corollary 3.10 gives ı.G/ � 3=2.

Since G is a Hamiltonian graph, there exists a Hamiltonian cycle g. Since L.g/ D n � 5, Lemma 3.11 gives
ı.G/ � 1.
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