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Abstract: Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. 
DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA 
repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of 
this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and 
on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the 
overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the 
expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its 
promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

Keywords: Methylation, de novo methyltransferase, overexpression of DNMT3B, cancer, cancer-related genes, 
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Introduction

Epigenetic and genetic alterations are common 
in the genesis and progression of various types 
human cancer. The abnormal expression of 
genes related to cell cycle, DNA repair, cellular 
metabolism and tumor suppressor are frequent 
defects that contribute to development of can-
cer [1]. Abnormal DNA methylation is one of the 
most important epigenetic factors directly 
involved in tumourigenesis, because methyla-
tion can induce repression of tumor suppressor 
genes or activation of oncogenes [2]. 

In human cancer the patterns of DNA methyla-
tion are altered: the overall level of DNA meth-
ylation is lower in normal cells than in cancer 
cells and the methylation of CpG islands of 
tumor suppressor and DNA repair is higher in 
cancer than normal cells [3]. DNA methylation 
at the 5’ cytosine of CpG sites is catalyzed by 
DNA methyltranferases (DNMTs). The DNMT 
family includes three enzymes, DNMT1 respon-

sible for maintaining pre-existing methylation 
patterns after DNA replication and DNMT3A 
and DNMT3B, de novo methyltransferases that 
are required to establish methylation during 
development and imprinting [4, 5]. Genetic 
abnormalities and aberrant overexpression of 
DNMTs contribute to DNA hypermethylation in 
cancer [6, 7]. Inhibition of these enzymes in 
cancer can decrease DNA methylation, reacti-
vate silence genes and diminish tumorigenicity 
[8]. Furthermore, it has been showed that 
DNMT3B is overexpressed in cell lines of can-
cer and in several types of primary tumors 
[9-14]. In several works of cancer, it has has 
been reported that there is a positive correla-
tion between DNMT3B expression and promot-
er DNA methylation [11, 13, 15, 16]. Interes- 
tingly, DNMT3B contributes to oncogenic pro-
cesses and tumorigenesis in vivo by gene-spe-
cific de novo methylation and transcriptional 
silencing [17]. Overexpression of DNMT3B pro-
tein significantly contributes to elevated methyl-
transferase activity and hypermethylation in 
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breast cancer cells [13]. Although, the impor-
tant role of DNMT3B in cancer development is 
clear, at present only a few genes have been 
identified as targets for transcriptional regula-
tion by this enzyme [18-21]. 

Therefore, the purpose of this study was to 
assess the effect of the overexpression of 
DNMT3B in HaCaT cells on global gene expres-
sion and on the methylation of selected genes 
to the identification of genes that can be target 
of DNMT3B. We found that the overexpression 
of DNMT3B in HaCaT cells downregulated the 
expression of VAV3, SORBS2, and GPR137 
genes by microarray and RT-qPCR and a clear 
increase in DNA methylation was detected in 
VAV3 promoter.

Materials and methods

Cell culture and cervical samples

The HaCaT (human skin keratinocyte), C-33A 
(cervical cancer), HeLa (cervical cancer), SiHa 
(cervical cancer), A549 (lung adenocarcinoma) 
and MCF-7 (breast adenocarcinoma) cells lines 
were obtained from American Type Culture 
Collection (ATCC, USA), cultured in DMEM and 
F-12 1:1, medium supplemented with 10% fetal 
bovine serum, 100 U/ml penicillin and 100 µg/
ml streptomycin. The cells were grown at 37°C 
in 5% CO2. The samples were collected at the 
Cancer Institute of the State of Guerrero locat-
ed in southern Mexico. The population consist-
ed of 25 healthy women and 25 women with 
cervical cancer. The diagnosis of normal cervix 
was done by cytomorphological examination 
through conventional Papanicolaou test and 
cervical cancer by histological diagnosis, 
according to the classification system of the 
International Federation of Gynecology and 
Obstetrics (FIGO). All samples were obtained 
after the patients gave their informed consent 
and the Bioethics and Research Committee of 
the Cancer Institute of the State of Guerrero, 
Mexico, approved the study, which followed  
the ethical guidelines of the 2008 Helsinki 
Declaration.

Transient transfection

Complementary DNA encoding DNMT3B was 
cloned into pcDNA3.1(+) plasmid (Invitrogent, 
Carlsbad, CA USA) to generate the pcDNA-
DNMT3B expression plasmid that was con-
firmed by sequencing. The HaCaT cells (25 x 

103 cells, 6-well plates) were transfected with 
Lipofectamine 2000 Reagent (Invitrogent) ac- 
cording to the manufacturer’s protocol. The 
cells were transfected with 3.5 µg of pcDNA-
DNMT3B plasmid or empty vector pcDNA3.1(+) 
and after 48 h the cells were harvested for RNA 
and DNA extraction. 

RNA and DNA extraction

Total RNA was isolated and purified from the 
cell lines and cervical tissue with Direct-zol RNA 
MiniPrep (ZYMO Research, Irvine, USA) accord-
ing to the manufacturer’s instructions including 
DNase I treatment. RNA integrity was deter-
mined by electrophoresis in a 1% agarose gel. 
Genomic DNA was extracted from the cells 
using a standard phenol chloroform method 
[22]. The concentration of RNA and DNA was 
evaluated by spectrophotometry using Nano- 
Drop 2000c (Thermo Scientific, Wilmington, DE 
USA).

Microarray analysis

H35K array was performed in Microarray Unit 
of Cellular Physiology Institute, UNAM, Mexico 
City. H35K contains 70-mer oligonucleotide 
probes representing 35764 human transcripts. 
Total RNA was extracted of HaCaT cells trans-
fected with pcDNA-DNMT3B and of HaCaT cells 
transfected with pcDNA3.1(+) (empty vector). 
Equimolar concentrations of total RNA from of 
3 independent experiments were mixed. Ten µg 
of RNA were used for cDNA synthesis and equal 
quantities of Cy3-labeled cDNA from control 
cells and Cy5-labeled cDNA from experimental 
cells were hibridized to the H35K array. Each 
hybridization was carried out in duplicate. Array 
signal intensities were analyzed with ScanArray 
4000 from Packard BioChips. Microarray data 
analysis, background correction, normalization 
and selection of differentially expressed genes 
were performed with GenArise software (http://
www.ifc.unam.mx/genarise/). Differentially ex- 
pressed genes were selected according to the 
Z-score value [23]. Differential expressed ge- 
nes were considered upregulated when Z-score 
> 1.5 standard deviation or downregulated 
when Z-score < 1.5 standard deviation. 

Bioinformatics analysis

Gene ontology (GO) analysis of the differentially 
expressed genes was performed with PANTHER 
(http://www.pantherdb.org/) and according to 
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the program an enrichment score 
of P < 0.05 was considered as sig-
nificant. For promoter prediction 
we considered 3000 pb (-2000 pb 
to +1000 pb) relative to ATG using 
the ExPASy Bioinformatics Reso- 
urce Portal (http://www.expasy.
org/genomics). For CpG island pre-
diction the criteria was regions > 
200 bp with a GC content ≥ 50% 
with an observed CpG/expected 
CpG > 0.6 [24]. CpG islands predic-
tion was done using the Methprimer 
Program (http://www.urogene.org/
methprimer/). The prediction of 
transcription factors that can bind 
to VAV3 promoter was done with 
CONSITE database (http://consite.
genereg.net/).

RT-qPCR 

One hundred ng of total RNA were 
used in each RT-qPCR assay. 
Reverse transcription and quantita-
tive PCR were performed with KAPA 
SYBR FAST One-Step qRT-PCR kit 
(Kapa Biosystems, Boston, Mas- 
sachusetts, USA), according to the 
manufacturer’s protocol. In all 
cases, the conditions of reverse 
transcription and amplifications 
were: 30 s at 37°C, 42°C for 5 min 
and 95°C for 5 min; 40 cycles of 
amplification: 5 s at 95°C, 30 s at 
60°C and 30 s at 72°C; melt curve: 
15 s at 95°C, 1 min at 60°C and 15 
s 95°C. The reactions were done in 
Real Time ABI-PRISM 7500 SDS 
(Applied Biosystems, Foster City, 
CA). Data were normalized using 
GAPDH as an internal control and 
relative expression differences 
were calculated using the 2-ΔΔCt 
method. Primers sequences are 
shown in Table 1.

Methylation-specific PCR (MSP) 
and bisulfite sequencing (BSP)

For MSP, 1 µg of DNA was treated 
with sodium bisulfite using the 
EpiTect Bisulfite kit (QUIAGEN, 
Hilden, Germany) according to the 
manufacturer’s instructions. MSP 

Table 1. Primer sequences used in this study 
Gene Sequence Tm °C
RT-qPCR
    MSH2 F5’-TTCATGGCTGAAATGTTGGA 59

R5’-ATGCTAACCCAAATCCATCG
    NSD1 F5’-TGAAGGCAGACATCAATTCG 55

R5’-CCAACTTGATTGAACCAGGAA
    SORBS2 F5’-AAGCACAGCCTGCAAGACCA 60

R5’-TGGGGTATTGGAGGGTCAGG
    ARHGAP29 F5’-TTAGAGGATGTTGTACGCC 58

R5’-TTCGATGAAAGTCTCCTGG
    VAV3 F5’-ACAAGGAGCCAGAACATTCAG 58

R5’-TTGCACAGAAGTCATACCGAG
    GPR137 F5’-TCAGCTATCAGACGGTGTTC 52

R5’-AGCAGTAGAGAAGCCAGAAG
    C1ORF201 F5’-CTTGTGAAGCAGTCGCCAAATACAT 58

F5’-CACGATCTCATACTGACCAGGACCT
    THSD1 F5’-GGAGGCCAACACCAATCAGA 59

R5’-CAGTAGTCACCAGCCTCCTT
    ST6GALNAC2 F5’-GGGTCGTTCTTCTGGCTGCT 59

R5’-TGATGTGGTGTCCCTGGCTC
    MSX1 F5’-CCAGAAGATGCGCTCGTCAA 59

R5’-TCGTCTTGTGTTTGCGGAGG
    GAPDH F5’-CCGGGAAACTGTGGCGTGATGG 60

R5’-AGGTGGAGGAGTGGGTGTCGCTGTT
MSP
    VAV3-R1 M F5’-GTTTTGGGGGATTTTATCGTATTAT 58

R5’-GACCCGCCACTAAACATACCCAAC
    VAV3-R1 U F5’-TGGGGGATTTTATTGTATTATAGTA 55

R5’-AACCCACCACTAAACATACCCAACA
    VAV3-R2 M F5’GGCGTTGGAGTCGGAAGTTTGTG 60

R5’-CACTACTTCCACGACTCCATACC
    VAV3-R2 U F5’-GGTGTTGGAGTTGGAAGTTTGTGT 59

R5’-CACACACTACTTCCACAACTCCATACC
    SORBS2-R1 M F5’-ATAATAAAAGAATAAATTTAGGTCGGG 58

R5’-CTATCGCCCAAACTAAAATACAAT
    SORBS2-R1 U F5’-TATAATAAAAGAATAAATTTAGGTTGGG 54

R5’-AAAATAAAATCTCACTCTATCAC
    SORBS2-R2 M F5’-GGGAATTATGTGTTAATTTAATTCG 52

R5’-AAATCATAAATACTAAACGCTCC
    SORBS2-R2 U F5’-GGAATTATGTGTTAATTTAATTTGATG 56

R5’-ATAAAATCATAAATACTAAACACTCC
BSP
    VAV3-R1 F5’-AGGGGGTTTTGGGGGATTTTAT 56

R5’-CCACTAAACATACCCAACA
    VAV3-R2 F5’-GGCGTTGGAGTCGGAAGTTTGTG 60

R5’-CACTACTTCCACGACTCCATACC
    SORBS2-R1 F5’-AGTTATAAAATTTTGATTGGTTGA 58

F5’-AACCTACAAACTTACTCTAAATCCTAT
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primer sequences are shown in Table 1. MSP 
was performed in a total of 10 µL, containing 1 
µL of bisulfite-treated DNA, 250 nM of each 
primers and AmpliTaq Gold360 Master Mix 
(Applied Biosystems) and under the following 
amplification conditions: denaturation 95°C for 
10 min, 40 cycles of amplification: 30 s at 
95°C, 30 s at 60°C and 30 s at 72°C, and a 
final extension of 72°C for 10 min. Bisulfite 
sequencing was done for VAV3, SORBS2, and 
GPR137 genes. The promoters of these genes 
were divided into two regions to facilitate the 
methylation analysis. One hundred ng of bisul-
fite-treated DNA was used as a template, and 
PCR was performed using specific primers 
(Table 1). The reactions were done in Eppendorf 
Mastercycler EP Gradient 96 Thermal cycler 
(Applied Biosystems). The PCR products were 
gel purified and cloned into the pJET1.2/blunt 
vector (Thermo Scientific). Five independent 
clones were subjected to automated sequenc-
ing (ABI Prism 310 Genetic Analyzer (Applied 
Biosystems). 

Statistical analysis

The data are shown as mean ± standard devia-
tion. The P value was determined using Stu- 
dent’s t-test. P values below 0.05 were consid-
ered statistically significant.

Results

DNMT3B has an important role in aberrant 
DNA methylation to repress transcription. To 
identify downregulated genes by DNMT3B, we 
overexpressed DNMT3B in the HaCaT cell line, 
and H35K microarray that interrogated 35764 
genes was used to identify changes in gene 
expression. We found 1085 downregulated 
genes, 1741 upregulated genes and 32938 
unchanged genes (Figure 1A). To gain insights 
into the biological processes where 1085 
downregulated genes are implicated, we car-
ried out a gene ontology (GO) analysis using 
Protein Analysis Through Evolutionary Rela- 
tionships (PANTHER). This analysis revealed 
that an important part of the 1085 downregu-
lated genes are involved in the immune system, 

value (Figure 2A). We narrowed down this group 
of genes by the selection of gene subsets with 
Z-scores of -2 to -6.8 (252 genes). Hyper- 
methylation of CpG islands found within pro-
moters is clearly related to transcriptional 
repression. Therefore, to relate the 252 down-
regulated genes with the methylation of its pro-
moter by overexpression DNMT3B, we used 
MethPrimer to prediction of CpG islands for 
252 genes. We found 151 genes with CpG 
islands, 73 genes without CpG islands and 28 
genes with absent data (Figure 2B). To know 
the biological processes where 151 genes with 
CpG islands are involved, we carried out GO 
analysis. We found that some of these genes 
are implicated in molecular and cellular pro-
cesses altered in cancer such as adhesion, 
apoptosis, response to stimulus, development, 
biological regulation and metabolic processes 
(Figure 2C). Among the 151 genes with CpG 
islands, we find genes with previous reports of 
abnormal methylation in several types human 
tumors, many genes putative or tumor suppres-
sor and genes related with cancer. The com-
plete list of 151 genes with CpG islands is 
shown in Supplementary Table 1.

To validate the results of the microarray, we 
analyzed the level of expression of 10 genes by 
RT-qPCR. These 10 genes were selected for fur-
ther validation because 1) they were downregu-
lated by overexpression of DNMT3B, 2) they 
have CpG islands and 3) they are involved in 
regulating important molecular and cellular 
functions which are disrupted in cancer. The 
function of 10 genes is shown in Supplementary 
Table 2. The level of expression of 7 genes was 
consistent with data from microarray analysis 
and inconsistent in three genes (Figure 3). The 
analysis by RT-qPCR showed that expression 
levels of SORBS2, VAV3 and GPR137 mRNAs 
were significantly downregulated by the overex-
pression of DNMT3B.

To clarify whether downregulation of VAV3, 
SORBS2, and GPR137 is mediated by DNA 
hypermethylation in overexpression of DNMT3B 

    SORBS2-R2 F5’-GGAATGATGTTTATAGGGAATTATGTG 59
F5’-CCCTAAAAATAAAATCATAAATACTAAA

    GPR137-R1 F5’-GGGGGTATTGGAGATAAGGAAAGG 59
F5’-CTCCTCTCTCCTATACCCAAATC

    GPR137-R2 F5’-TTTTTTTTTTTTGAGGTTGGAG 59
F5’-CAAACCCCTCACTCAAAAACA

development processes, cell com-
munication, cellular processes and 
metabolic processes (Figure 1B). 
The GO analysis for the 1741 upreg-
ulated genes is shown in Sup- 
plementary Figure 1.

The 1085 downregulated genes 
were classified according to Z-score 
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Figure 1. Gene ontology analysis of downregulated genes by overexpression of DNMT3B in HaCaT cells. A: We used 
H35K array of 35764 genes, the graph shows the number of genes that change their expression by overexpression 
of DNMT3B. B: Gene ontology (GO) analysis for downregulated genes by overexpression of DNMT3B.

Figure 2. Prediction of CpG island in downregulated genes by overexpression of DNMT3B in HaCaT cells. A: Classi-
fication of downregulated genes according to Z-score value, the graph shows the number of genes for each Z-score 
range. B: Number of genes with and without CpG island. C: Gene ontology (GO) analysis for 151 genes with CpG 
island.
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HaCaT cells, we analyzed the methylation sta-
tus of its promoters by using methylation-spe-
cific PCR (MSP) and bisulfite conversion and 
sequencing. For the VAV3 gene, its CpG island 
spanning from -599 pb to +20 pb of the tran-
scription start site, within of this region we 
found 95 CpGs sites (Figure 4A). No obvious 
methylation changes were observed between 
HaCaT cells and HaCaT cells with overexpres-
sion of DNMT3B by MSP analysis (Figure 4B). 
To make a more detailed analysis of methyla-
tion status, we analyzed the methylation in the 
95 CpGs sites of the VAV3 promoter. We found 
two small, more densely methylated regions 
(15, 16, 17, 18, 19 and 21 CpG sites of region 
1 and 52, 53, 54, 55, 56, 57, 58 and 59 CpG 
sites of region 2) of the VAV3 promoter in HaCaT 
cells with overexpression of DNMT3B in com-
parison with HaCaT cells (Figure 4C). These 
results suggest that the overexpression of 
DNMT3B in HaCaT cells probably has a role in 
the methylation of the VAV3 promoter. The MSP 
and bisulfite conversion and sequencing analy-
sis was done for SORBS2, and GPR137 genes 
but no methylation changes were observed 
between HaCaT cells with overexpression of 
DNMT3B and HaCaT cells (Supplementary 
Figures 2 and 3). 

Finally, to correlate our results with what occurs 
in human cancer, we analyzed the expression 
of DNMT3B in cervical cancer samples and nor-
mal cervical tissue. As well as DNMT3B, VAV3, 

DNMT3B overexpression and abnormal meth-
ylation of tumour suppressor and DNA repair 
genes are common alterations in several types 
of human cancer [6, 25]. There is evidence indi-
cating the involvement of DNMT3B in the initia-
tion and progression of cancer [20, 26]. In addi-
tion DNMT3B is clearly related to the abnormal 
methylation in cancer [21, 27]. Although only 5 
genes have been identified as targets for tran-
scriptional repression by DNMT3B [18-21].

In this work the overexpression of DNMT3B in 
HaCaT cells downregulated 151 genes with 
CpG islands. This result suggests that the 
downregulated genes could be result from the 
methylation of its promoter by DNMT3B overex-
pression. In this sense, it has been reported 
that DNMT3B preferably to methylate CpG-
dense promoter regions and is excluded from 
active promoters [28]. Also, downregulation or 
repression by methylation requires promoters 
with high methylated-cytocines [29-31]. In ini-
tiation and progression of cancer, DNMT3B has 
directly or indirectly been associated with 
abnormal expression and methylation [8, 26, 
27]. An similar scenario it could be also seen in 
our study in which of the downregulated 151 
genes by DNMT3B were found 22 genes with 
previous reported of abnormal methylation in 
several types of human cancer, 9 reported as 
putative or tumor suppressors genes and 61 
genes related to many aspects of human 
cancer. 

Figure 3. Validation of microarray data by RT-qPCR. mRNA quantification of 
10 genes in HaCaT cells with overexpression of DNMT3B and control HaCaT 
cells. The bars represent the mean ± standard deviation from at least three 
independent experiments. *P < 0.05

SORBS2 and GPR137 expres-
sion in cervical, lung and br- 
east cancer cell lines. RT-qPCR 
analysis showed that mRNA 
level of DNMT3B in cervical 
cancer samples was signifi-
cantly higher that in normal tis-
sue (Figure 5A). In general, in 
the analyzed cell lines, we fou- 
nd overexpression of DNMT3B 
and low levels VAV3, SORBS2 
and GPR137 (Figure 5B). The- 
se results suggest that overex-
pression of DNMT3B can be a 
common event in human can-
cer and expression of VAV3, 
SORBS2 and GPR137 could  
be regulated by DNMT3B.

Discussion 
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The overexpression of DNMT3B in HaCaT cells, 
downregulated the expression of VAV3, SOR- 
BS2, and GPR137 genes by RT-qPCR, but a 
clear increase in DNA methylation was only 
detected in the VAV3 promoter. Therefore it is 
possible that the VAV3 gene is regulated by 
DNMT3B via methylation of its promoter. VAV3 
is a guanine nucleotide exchange factor in- 
volved in the regulation of Rho GTPases and in 
several cellular processes, including regulation 
of cytoskeleton organization, cell transforma-
tion and oncogenesis [32-34]. In addition, 
abnormal methylation of the VAV3 promoter 

has been reported in breast cancer cell lines 
and in gastric cancer the methylation of its pro-
moter is considered as a marker to estimate 
the fraction of cancer cells in primary gastric 
cancer [35, 36]. On the other hand, we detect-
ed methylation of the VAV3 promoter in HaCaT 
cells without overexpression of DNMT3B. 
Although this result is unexpected, previously 
methylation of the VAV3 promoter in normal 
cells of the gastric mucosa has been reported 
[36]. By in silico analysis with CONSITE we 
detected that the transcription factors: Sp1, 
AP2 alpha, MZF, E2F, Hen-1 and Thing1-E47 

Figure 4. Methylation analysis of VAV3 promoter in HaCaT cells. A: Schematic representation of the CpG island and 
CpG sites in the VAV3 promoter. For methylation analysis the VAV3 promoter was divided into 2 regions: R1 -599 
to -307 with 34 CpGs and R2 -299 to +20 with 61 CpGs, the positions are relative to the transcription start site. 
The primers for MSP and BSP are indicated by black and red arrows, respectively. Each CpG site is represented by 
a vertical bar. B: The methylation status of the VAV3 promoter (R1 and R2) was determined by MSP in HaCaT cells 
with overexpression of DNMT3B and control HaCaT cells. U showed unmethylation-specific primer amplification, M 
showed methylation-specific primer amplification. C: BSP analysis of the VAV3 promoter (R1 and R2) in HaCaT cells 
with overexpression of DNMT3B and control HaCaT cells. Black circles represent methylated CpG site and white 
circles represent unmethylated CpG site. The red box shows the two regions more densely methylated by overex-
pression of DNMT3B.
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can bind to localized sites in the more densely 
methylated regions of the VAV3 promoter. It is 
well known that the methylation of CpG in the 
Sp1 binding site generally interferes with its 
binding and can affect the transcription [37, 
38]. The E2F transcription factor, does not bind 
DNA when their site recognition is methylated 
[39]. To some promoters AP2 alpha can act as 
a suppressor for Sp1 binding, also the AP2 
alpha binding to DNA may initiate transcription-
al silencing by recruiting of DNMTs [40, 41]. 
Therefore it is possible that the methylation of 
binding sites Sp1, AP2 alpha and E2F located in 
the two more densely methylated regions of 

reports of abnormal methylation of the GPR137 
promoter in human cancer. It is therefore likely 
that additional events are causing the down-
regulation the expression of SORBS2 and 
GPR137 genes. For example, methylation-inde-
pendent repressor activities of DNMT3B [53].

In the current study, we found overexpression 
of DNMT3B in cervical cancer and various can-
cer cell lines. This event has been previously 
reported in various types of human cancer [8, 
9, 13]. We also reported overexpression of 
DNMT3B and low levels of VAV3, SORBS2 and 
GPR137 in cervical, lung and breast cancer cell 

VAV3 promoter can inhibit its 
binding and its subsequent 
transcriptional activation. Th- 
is event could explain the 
expression decrease of the 
VAV3 gene in HaCaT cells with 
overexpression of DNMT3B.

The overexpression of DN- 
MT3B in HaCaT cells, down-
regulates the expression of 
SORBS2 and GPR137 genes, 
but the methylation of its  
promoters do not increase. 
SORBS2 is a scaffold protein 
involved in the assembly of 
signaling complexes in stress 
fibers and actin cytoskeleton 
[42, 43]. This gene is consid-
ered as putative tumour sup-
pressor and although there is 
evidence of the loss or 
decrease of its expression in 
cervical and pancreatic can-
cer [44, 45], there is no evi-
dence that this is due to pro-
moter methylation. GPR137 
is an integral membrane pro-
tein that belongs to the 
GPR137 family of cell media-
tors of signal transduction 
[46, 47]. Although the role of 
GPR137 in cancer is little 
known, several reports indi-
cate that this gene is impor-
tant a regulator of cell growth, 
apoptosis, invasion and mi- 
gration in different types of 
human cancer [48-52]. Si- 
milar to SORBS2 there are no 

Figure 5. Expression of DNMT3B, 
VAV3, SORBS2 and GPR137 in 
human cancer by RT-qPCR. A: 
mRNA expression levels of DN-
MT3B in cervical cancer and 
normal cervix. The mRNA expres-
sion levels of GAPDH were used 
as internal control. B: mRNA 
expression levels of DNMT3B, 
VAV3, SORBS2 and GPR137 in 
cervical, lung and breast cancer 
cell lines. The data are presented 
as the fold change in cancer cell 
line relative to HaCaT cell line. 
The bars represent the mean ± 
standard deviation from at least 
three independent experiments. 
*P < 0.05.



DNMT3B downregulates the expression of cancer-related genes

85 Am J Cancer Res 2017;7(1):77-87

lines. This could indicate that the findings in the 
DNMT3B overexpression in HaCaT cells model 
also occur in primary human tumors and human 
cancer cell lines. 

In conclusion, our results suggest that the over-
expression of DNMT3B in HaCaT cells, modu-
late the expression of genes related to cancer, 
downregulate the expression of 151 genes with 
CpG islands and downregulate the expression 
of the VAV3 gene via methylation of its promot-
er. These findings highlight the importance of 
DNMT3B in the gene expression and human 
cancer.
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Supplementary Figure 1. Gene ontology (GO) analysis for upregulated genes by overexpression of DNMT3B in 
HaCaT cells.
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Supplementary Table 1. Genes with CpG island downregulated by overexpression of DNMT3B in HaCaT cell
Gene-ID Gene symbol Gene name Epigenetic evidence

ENSG00000106477 TSGA14 Centrosomal protein 41 kDa Methylated in Ewing sarcoma (ES) cell lines and primary ES [1].

ENSG00000134215 VAV3 VAV3 guanine nucleotide exchange factor Methylated in breast cancer cell lines [2].

ENSG00000196263 ZNF471 Zinc finger protein 471 Methylated in colorectal cancer [3].

ENSG00000163132 MSX1 Msh homeobox 1 Methylated in leukemia (T-ALL, T-linage leukemia) [4], and testicular cancer [5]. Furthermore, MSX1 is 
a repressor of cell cycle in human ovarian cancer cells [6]. Downregulated in cervical cancer tissue and 
cervical cell lines [7].

ENSG00000095002 MSH2 MutS homolog 2 Methylated in hepatocellular carcinoma [8], and Lynch Syndrome tumors [9].

ENSG00000165671 NSD1 Nuclear receptor binding SET domain protein 1 Methylated in human neuroblastoma and glioma cells [10].

ENSG00000170558 CDH2 Cadherin 2, type 1, N-cadherin Methylated in primary gastric cancer, gastric cancer cell lines [11], and colon cancer [12].

ENSG00000112541 PDE10A Phosphodiesterase 10A Methylated in colorectal cancer [13].

ENSG00000136158 SPRY2 Sprout RTK signaling antagonist 2 Methylated in invasive prostate cancer cell lines (CaP) [14].

ENSG00000197579 TOPORS Topoisomerase I binding, arginine/serine-rich E3, 
ubiquitin protein ligase

Methylated in colon adenocarcinoma [15].

ENSG00000183044 ABAT 4-aminobutyrate aminotransferase Methylated in myelodysplastic syndrome [16], and glioblastoma [17].

ENSG00000162496 DHRS3 Dehydrogenase/reductase (SDR family) member 3 Methylated in neuroblastoma [18], and melanoma cell lines [19].

ENSG00000165325 CCDC67 Coiled-coil domain containing 67 Methylated in gastric cancer [20].

ENSG00000134202 GSTM3 Glutathione S-transferase mu 3 Methylated in Barrett’s adenocarcinoma (BACs) samples [21].

ENSG00000116667 C1orf21 Chromosome 1 open reading frame 21 Methylated in squamous cell carcinoma (SCC) [22].

ENSG00000137962 ARHGAP29 Rho GTPase activating protein 29 Methylated in mantle cell lymphomas (MCL) cell lines and primary MCL samples [23].

ENSG00000147889 CDKN2A Cyclin-dependent kinase inhibitor 2A Methylated in cervical cancer [24, 25], in patients with non-invasive urinary bladder [26].

ENSG00000108753 TCF2 HNF1B homeobox B Methylated in ovarian cancer cell lines and primary ovarian cancers [27].

ENSG00000116754 SFRS11 Serine/arginine-rich splicing factor 11 Xenoestrogen bisphenol A (BPA) induce methylation of SFRS11 gene in human breast epithelial cells [28].

ENSG00000172175 MALT1 MALT1 paracaspase Methylated in oral carcinoma [29].

ENSG00000113569 NUP155 Nucleoporin 155 kDa Methylation of NUP155 gene has been associated with breast cancer risk and is considered an epimarker 
in this type of cancer [30].

ENSG00000136114 THSD1 Thrombospondin, type I, domain containing 1 Methylated in colorectal cancer [31], and esophageal squamous cell carcinoma (ESCCC) [32].

ENSG00000159346 ADIPOR1 Adiponectin receptor 1 Methylated in overweight children [33].

ENSG00000163702 IL17RC Interleukin 17 receptor C Hipomethylated in age related macular degeneration (AMD) patients; therefore, suggesting that the DNA 
methylation pattern and expression of IL17RC may potentially serve as a biomarker for diagnosis of AMD 
[34].

ENSG00000143194 MAEL Maelstrom spermatogenic transposon silencer Hypomethylated in colorectal cancer [35].

Gene-ID Gene symbol Gene Tumor suppressor evidence

ENSG00000107968 MAP3K8 Mitogen-activated protein kinase kinase kinase 8 Is a tumor suppressor in lung cancer [36].

ENSG00000125347 IRF1 Interferon regulatory factor 1 IRF1 acts as a tumor suppressor in breast cancer [37].

ENSG00000070731 ST6GALNAC2 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-
N-acetylgalactosaminide alpha-2,6-sialyltransferase 2

ST6GALNAC2 acts as a breast cancer metastasis suppressor [38].

ENSG00000136158 SPRY2 Sprout RTK signaling antagonist 2 Is proposed as a potential tumor suppressor in prostate cancer [39].

ENSG00000197579 TOPORS Topoisomerase I binding, arginine/serine-rich E3, 
ubiquitin protein ligase

Is possibly a tumor suppressor in colon adenocarcinoma [15, 40].

ENSG00000165325 CCDC67 Coiled-coil domain containing 67 Is a putative tumor suppressor gene in gastric cancer [20].
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ENSG00000137962 ARHGAP29 Rho GTPase activating protein 29 Is a novel candidate tumor suppressor in mantle cell lymphomas [23].

ENSG00000136114 THSD1 Thrombospondin, type I, domain containing 1 Is considered a candidate tumor suppressor in esophageal squamous cell carcinoma [32].

ENSG00000080839 RBL1 Retinoblastoma-like 1 RBL1 or p70 can suppress the cell growth in Saos-2 and C-33A cells. The growth suppression effect of 
p70 is cell-type and cell-cycle stage dependent [41]; on the other hand, RBL1 is downregulated in gliomas 
and it can act as tumor suppressor [42].

Gen-ID Gene symbol Gene name Cancer involvement

ENSG00000173068 BNC2 Basonuclin 2 Lower BNC2 expression has been demonstrated in epithelial ovarian cancer (EOC) cell cultures compared 
to normal ovarian cell lines [43].
BNC2 is a known EOC susceptibility gene. Future studies should further explore the role of DNA methyla-
tion in BNC2 [44].

ENSG00000112499 SLC22A2 Solute carrier family 22 Downregulated in pancreatic cancer [45]. High levels of OCT2 (SLC22A2) indicate severe invasion, but 
also better prognosis in metastatic colorectal cancer (mCRC) patients treated with oxaliplatin-based 
chemotherapy, possibly because of its role in oxaliplatin susceptibility [46].

ENSG00000135678 CPM Carboxypeptidase M Carboxypeptidase M is not expressed in human renal cell carcinoma tumor cells [47].

ENSG00000184979 USP18 Ubiquitin specific peptidase 18 Decreased expression of USP18 is a reliable prognostic marker for cancer specific survival in muscle 
invasive bladder cancer (MIBC) [48].

ENSG00000169398 PTK2 Protein tyrosine kinase 2 Is expressed in several human malignancies (Sulzmaier et al., 2014; Zhao et al., 2009), as well as cervical 
cancer [49].

ENSG00000141570 CBX8 Chromobox homolog 8 Is a novel oncogene that promotes the proliferation of tumor cells and raises the resistance of neoplasms 
to chemotherapy in esophageal carcinoma [50].

ENSG00000065361 ERBB3 Erb-b2 receptor tyrosine kinase 3 ROS inducing ERBB3 expression in OVCAR-3 cells [51].

ENSG00000124782 RREB1 Ras responsive element binding protein 1 Is overexpressed in colorectal adenocarcinoma tumors and cell lines [52], and prostate cancer [53].

ENSG00000006634 DBF4 Protein DBF4 homolog (Activator of S phase Kinase) Highly expressed in many cancer cell lines [54].

ENSG00000157764 BRAF B-Raf proto-oncogene, serine/threonine kinase Mutations in BRAF is a frequent event in colorectal cancers (CRC) and BRAF mutations are associated 
with methylator phenotype in CRC [55-57]. Overexpressed in breast brain metastases [58].

ENSG00000197694 SPTAN1 Spectrin, alpha, non-erythrocytic 1 Linked with tumor progression and ovarian malignancy [59].

ENSG00000135823 STX6 Syntaxin 6 Overexpressed in human cancer as well as, breast, colon, pancreatic, prostate, bladder, skin, testicular, 
tongue, cervical, liver, lung and gastric cancer and has a role in cellular migration [60].

ENSG00000198682 PAPSS2 3,-phosphoadenosine 5,-phosphosulfate synthase 2 Expressed in ER-positive breast cancer tissues [61].

ENSG00000146242 TPBG Trophoblast glycoprotein Expressed in colorectal carcinoma [62], bladder, breast, cervix, endometrium, lung, esophagus, ovary, 
pancreas, stomach carcinomas [63].

ENSG00000125755 SYMPK Symplekin Expressed in human colorectal cancer and promotes tumorigenesis [64].

ENSG00000118898 PPL Periplakin Is highly expressed in triple-negative breast cancer (TNBC) [65].

ENSG00000165030 NFIL3 Nuclear factor, interleukin 3 regulated Highly expressed in basal-like breast cancer and glioblastoma multiforme and NFIL3 expression is strongly 
correlated with poor prognosis in breast cancer [66].

ENSG00000112473 SLC39A7 Solute carrier family 39 (zinc transporter), member 7 MCF7 cell models of acquired tamoxifen resistance (TamR cells) have increased levels of zinc and zinc 
transporter, resulting in an enhanced response to exogenous zinc, leading to increased growth and inva-
sion [67].

ENSG00000064042 NP_055803.1 
(LIMCH1)

LIM and calponin homology domains 1 Overexpressed in ERα-positive breast tumors with PIK3CA mutations [68].

ENSG00000082996 RNF13 Ring finger protein 13 RNF13 gene expression is associated with cancer development [69]. Furthermore, RINF13 is overex-
pressed in pancreatic cancer [70].

ENSG00000101182 PSMA7 Proteasome (prosome, macropain) subunit, alpha type, 
7

Reduced expression in prostate cancer [71]. PSMA7 inhibits the proliferation, tumorigenicity and inva-
sion of A549 human lung adenocarcinoma cells in vitro [72], and PSMA is highly expressed in colorectal 
cancer cell lines [73].
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ENSG00000151240 DIP2C Disco-interacting protein 2 homolog C Somatic mutations in the DIP2C gene have an impact on protein function in breast cancer [74].

ENSG00000136986 DERL1 Derlin 1 Overexpressed in breast-brain metastases [75].

ENSG00000107077 JMJD2C Lysine (K)-specific demethylase 4C Overexpressed in colon cancer cell lines and confers a pro-growth effect on colon cancer cells [76].

ENSG00000173264 GPR137 G protein-coupled receptor 137 GPR137 is highly expressed in multiple human gastric cancer cell lines; however, Its role in human dis-
ease onset has remained to be elucidated [77].

ENSG00000173890 GPR160 G protein-coupled receptor 160 G protein-coupled receptor 160 (GPR160) has been proposed as an oncogene involved in nasopharyngeal 
carcinoma [78].

ENSG00000070886 EPHA8 EPH receptor A8 mRNA expression in colon cancer [79].

ENSG00000136807 CDK9 Cyclin-dependent kinase 9 Is required for the proliferation of HCC cell lines [80]; furthermore, CDK9 is important for cancer cell 
survival [81].

ENSG00000150630 VEGFC Vascular endhothelial growth factor C Overexpression of VEGFC in breast cancer cells promotes metastasis to lymph nodes and lungs [82]; 
furthermore expression of VEGFC has been reported in various types of cancer such as breast, lung, 
squamous cell, sarcomas, melanomas [83], mesothelioma [84]; gastric [85] and other.

ENSG00000138685 FGF2 Fibroblast growth factor 2 Plays an important role in prostate cancer [86], lung [87], and head and neck [88].

ENSG00000158711 ELK4 ETS-like transcription factor 4 (ELK4) Expressed in prostate cancer and contributes to cellular growth [89, 90].

ENSG00000168438 CDC40 Cell division cycle 40 Upregulated in the primary CRC tissues, and promotes CRC cell growth [91].

ENSG00000117298 ECE1 Endothelin converting enzyme 1 Expressed in human prostate cancer cell lines [92], and ovarian carcinoma cells [93]. ECE-1 contributes 
to invasion and migration in cancer [94, 95].

ENSG00000105647 PIK3R2 Phosphoinositide-3-kinase, regulatory subunit 2 (beta) PIK3R2 mutations have been reported in endometrial tumors and PIK3R2 is considered a novel endome-
trial cancer gene [96] .

ENSG00000127914 AKAP9 A kinase (PRKA) anchor protein 9 The AKAP9 M463I T allele is associated with an increased breast cancer risk in familial breast cancer 
[97].

ENSG00000118733 OLFM3 Olfactomedin 3 Plays an important role in anoikis resistance, and OLFM3 is expressed in lung, breast and resistant nasal 
cancer cell lines anoikis [97].

ENSG00000129515 SNX6 Sorting nexin 6 Sorting nexin 6 (SNX6) interacts with breast cancer metastasis suppressor 1 (BRMS 1) protein and favor-
ing transcriptional repression, furthermore, BRMS1-SNX6-HDAC complex may modulate the transcriptional 
repression [98].

ENSG00000109182 NP_079363.1 
(CWH43)

Cell wall biogenesis 43 C-terminal homolog Cell Wall Biogenesis 43 C-Terminal Homolog (CWH43) is downregulated in colorectal tumor tissues, but its 
role in colorectal cancer has not been reported [99].

ENSG00000185250 PPIL6 Peptidylprolyl isomerase (cyclophilin)-like 6 Is a novel gene identified in genomic aberrations associated with prostate cancer progression, but its 
function has not been characterized [100].

ENSG00000175054 ATR ATR serine/threonine kinase Human colorectal cancer cells require Ataxia telangiectasia mutated and Rad3-related (ATR) for cell cycle 
progression after IR treatment [101]; ATR is a therapeutic target in cancer [102, 103]; ATR mutations in 
endometrial cancer are associated with reduced overall survival and disease-free survival [104].

ENSG00000075388 FGF4 Fibroblast growth factor 4 Exogenous FGF4 provides an advantage in cell growth and tumorigenicity of HBL100 and MCF7 breast 
cancer cells and the cells that expressed FGF4 show an aggressive phenotype, actually, spontaneous 
metastasis [105-108].

ENSG00000125304 TM9SF2 Transmembrane 9 superfamily member 2 Expressed in breast cancer cells, and it is propose as a diagnostic biomarker [109]; the expression of 
TM9SF2 in colorectal cancer (CRC) patients has been associated with poor survival [110].

ENSG00000072274 TFRC Transferrin receptor Expressed in human pancreatic cancer and in neuroendocrine carcinoma of pancreas and it has been 
proposed as a marker of malignant transformation [111]; furthermore, TFRC is expressed in esophageal 
squamous cell carcinoma (ESCC), and it can be a prognostic factor in patients with ESCC [112]. TFRC is 
upregulated in invasive cervical cancer and it is associated with invasion in this type of cancer [113]. 

ENSG00000141642 ELAC1 ElaC ribonuclease Z 1 Downregulated in colorectal liver metastases [114].

ENSG00000072042 RDH11 Retinol dehydrogenase 11 (all-trans/9-cis/11-cis) Retinol dehydrogenase 11 (RDH11 or PSDR1) is overexpressed in prostate cancer and it has been sug-
gested that it may play role in prostate carcinoma [115, 116]. 



DNMT3B downregulates the expression of cancer-related genes

5 

ENSG00000180667 YOD1 YOD1 deubiquitinase YOD1 was identified as a target of miR-373 in cervical cancer, however, the role of YOD1 in cancer has not 
yet been elucidate [117].

ENSG00000173253 DMRT2 Doublesex and mab-3 related transcription factor 2 DMRT2 is a transcription factor that is downregulated in clear cell renal cell carcinoma (ccRCC) [118].

ENSG00000101856 PGRMC1 Progesterone receptor membrane component 1 Plays a role in cell growth, cell viability and chemoresistance in endometrial tumors, ovarian cancer, and 
uterine sarcoma [119-121]; furthermore, this gene is associated with tumorigenesis in lung cancer [122].

ENSG00000141985 SH3GL1 SH3-domain GRB2-like 1 Expressed in human medulloblastoma (MB) cell lines and is a target of miR-128 [123].

ENSG00000173141 MRP63 Mitochondrial ribosomal protein L57 Downregulated in glioma cell lines with 13q deletion [124].

ENSG00000138709 LARP2 The ribonucleoprotein domain family, member 1B Expressed in meningiomas [125].

ENSG00000177189 RPS6KA3 Ribosomal protein S6 kinase, 90 kDa, polypeptide 3 RPS6KA3 is frequently mutated in hepatocellular carcinoma (HCC) [126]. 

ENSG00000164270 HTR4 5-hydroxytryptamine (serotonin) receptor 4, G protein-
coupled

Overexpressed in high grade tumours and DU145 and LNCap prostate cancer [127].

ENSG00000122679 RAMP3 Receptor (G protein-coupled) activity modifying protein 3 Expressed in prostate cancer tissue and might be involved in tumor cell growth [128].

ENSG00000186017 ZNF566 Zinc finger protein 566 Zinc finger proteins (ZNF) are implicated in the development of various types of cancer [129-134].

ENSG00000198522 ZNF512 Zinc finger protein 512

ENSG00000171467 ZNF318 Zinc finger protein 318

ENSG00000135502 SLC26A10 Solute carrier family 26, member 10 The solute carriers (SLC) transporters expressed in cancer cells promoting cell growth and SLC members 
are associated with cancer therapy [135, 136].ENSG00000075415 SLC25A3 Solute carrier family 25 (mitochondrial carrier; phos-

phate carrier), member 3

ENSG00000163848 SLC12A8 Solute carrier family 12, member 8

Gene-ID Gene symbol Name gene Cancer information not available

ENSG00000100767 PAPLN Papillin, proteoglycan-like sulfated glycoprotein 

ENSG00000138032 PPM1B Protein phosphatase, Mg2+/Mn2+ dependent, 1B

ENSG00000141198 TOM1L1 Target of myb1 like 1 membrane trafficking protein

ENSG00000125534 C20orf149 Pancreatic progenitor cell differentiation and prolifera-
tion factor

ENSG00000022277 C20orf43 Replication termination factor 2 domain containing 1 

ENSG00000121931 C1orf103 Ligand dependent nuclear receptor interacting factor 1

ENSG00000120685 C13orf23 Proline and serine rich 1

ENSG00000103254 C16orf24 Family with sequence similarity 173, member A

ENSG00000001460 C1orf201 Sperm-tail PG-rich repeat containing 1

ENSG00000175707 C1orf172 Keratinocyte differentiation factor 1

ENSG00000168175 C14orf32 Mitogen-activated protein kinase 1 interacting protein 
1-like

ENSG00000166262 C15orf33 Family with sequence similarity 227, member B

ENSG00000185567 Q5BKX7_HU-
MAN (C14orf78)

AHNAK nucleoprotein 2

ENSG00000100625 SIX4 SIX homeobox 4

ENSG00000111725 PRKAB1 Protein kinase, AMP-activated, beta 1 non-catalytic 
subunit

ENSG00000166965 RCCD1 RCC1 domain containing 1

ENSG00000153951 OR4D2 Olfactory receptor, family 4, subfamily D, member 2 

ENSG00000164366 CCDC127 Coiled-coil domain containing 127

ENSG00000143630 HCN3 Hyperpolarization activated cyclic nucleotide gated 
potassium channel 3
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ENSG00000023909 GCLM Glutamate-cysteine ligase, modifier subunit

ENSG00000087470 DNM1L Dynamin 1-like

ENSG00000162188 GNG3 Guanine nucleotide binding protein (G protein), gamma 
3

ENSG00000168268 NT5DC2 5,-nucleotidase domain containing 2

ENSG00000167700 MFSD3 Major facilitator superfamily domain containing 3

ENSG00000183340 JRKL JRK-like

ENSG00000174740 PABPC5 Poly (A) binding protein, cytoplasmatic 5

ENSG00000052723 NP_079349.1 
(SIKE1)

Suppressor of IKBKE 1 

ENSG00000054116 TRAPPC3 Trafficking protein particle complex 3

ENSG00000138073 PREB Prolactin regulatory element binding

ENSG00000171763 SPATA5L1 Spermatogenesis associated 5-like 1

ENSG00000112972 HMGCS1 3-hydroxy-3-methylglutaryl-CoA synthase 1

ENSG00000112992 NNT Nicotinamide nucleotide transhydrogenase

ENSG00000141994 DUS3L Dihydrouridine synthase 3-like

ENSG00000089775 ZBTB25 Zinc finger and BTB domain containing 25

ENSG00000123737 EXOSC9 Exosome component 9

ENSG00000068724 TTC7A Tetratricopeptide repeat domain 7A

ENSG00000138363 ATIC 5-aminoimidazole-4-carboxamide ribonucleotide formyl-
transferase/IMP cyclohydrolase

ENSG00000159202 UBE2Z Ubiquitin-conjugating enzyme E2Z

ENSG00000171861 RNMTL1 RNA methyltransferase like 1

ENSG00000127824 TUBA1 Tubulin, alpha 4a

ENSG00000157212 PAXIP1 PSX interacting (with transcription-activation domain) 
protein 1

ENSG00000084734 GCKR Glucokinase (hexokinase 4) regulator

ENSG00000166337 TAF10 TAF10 RNA polymerase II, TATA box binding protein 
(TBP)-associated factor, 30 kDa

ENSG00000149256 ODZ4 Teneurin transmembrane protein 4

ENSG00000004777 SNX26 Rho GTPase activating protein 33

ENSG00000113811 SELK_HUMAN Selenoprotein K

ENSG00000165678 GHITM Growth hormone inducible transmembrane protein

ENSG00000176261 ZBTB8OS Zinc finger and BTB domain containing 8 opposite 
strand

ENSG00000163964 PIGX Phosphatidylinositol glycan anchor biosynthesis, class X 

ENSG00000138617 PARP16 Poly (ADP-ribose) polymerase family, member 16

ENSG00000066583 ISOC1 Isochorismatase domain containing 1

ENSG00000179562 GCC1 GRIP and coiled-coil domain containing 1 

ENSG00000197568 HHLA3 HERV-H LTR-associating 3

ENSG00000132846 ZBED3 Zinc finger, BED-type containing 3 

ENSG00000135241 PNPLA8 Patatin-like phospholipase domain containing 8
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ENSG00000138439 ALS2CR13 family with sequence similarity 117, member B

ENSG00000178636 Q8N7N2_HU-
MAN

-

ENSG00000166451 CENPN Centromere protein N

ENSG00000130363 RSHL2 Radial spoke 3 homolog (Chlamydomonas)

ENSG00000106012 IQCE IQ motif containing E

ENSG00000166863 TAC3 Tachykinin 3

ENSG00000157890 MEGF11 Multiple EGF-like-domains 11

Supplementary Table 2. Genes selected for RT-qPCR validation and methylation analysis 
Gene-ID Gene symbol Gene name GO (Biological process) Epigenetic evidence and cancer involvement
ENSG00000095002 MSH2 MutS homolog 2 Biological regulation 

Cellular component organization
Metabolic process 
Reproduction
Response to stimulus

Methylated in hepatocellular carcinoma [8], and Lynch Syndrome tumors 
[9].

ENSG00000165671 NSD1 Nuclear receptor binding SET domain protein 1 Cellular component organization
Cellular process 
Metabolic process 

Methylated in neuroblastoma and glioma [137].

ENSG00000134215 VAV3 VAV3 guanine nucleotide exchange factor Cellular process 
Biological regulation 
Immune system process 
Metabolic process
Multicellular organismal process 
Response to stimulus 

Methylated in breast cancer cell lines [138].

ENSG00000163132 MSX1 Msh homeobox 1 Metabolic process
Developmental process 
Biological regulation

Methylated in leukemia (T-ALL, T-linage leukemia) [4], and testicular 
cancer [5]. Furthermore, MSX1 is a repressor of cell cycle in human 
ovarian cancer cells [6]. Downregulated in cervical cancer tissue and 
cervical cell lines [7].

ENSG00000137962 ARHGAP29 Rho GTPase activating protein 29 Non-annotated gene Methylated in mantle cell lymphoma [139].

ENSG00000136114 THSD1 Thrombospondin, type I, domain containing 1 Non-annotated gene Methylated and candidate tumor suppressor gene in colon cancer [140].

ENSG00000070731 ST6GALNAC2 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-
N-acetylgalactosaminide alpha-2,6-sialyltransferase 2

Metabolic process Candidate tumor suppressor gene in breast cancer [141].

ENSG00000154556 SORBS2 Sorbin and SH3 domain containing 2 Metabolic process Putative tumor suppressor gene involved in cervical carcinogenesis 
[142].

ENSG0000017326 GPR137 G protein-coupled receptor 137 Non-annotated gene Highly expressed in multiple human gastric cancer cell lines; however, Its 
role in human disease has remained to be elucidated [77].

ENSG00000001460 C1ORF201 Sperm-tail PG-rich repeat containing 1 Non-annotated gene No studies have report its relationship with human cancer but plays a 
role in apoptosis [143].
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Supplementary Figure 2. Methylation analysis of SORBS2 promoter in HaCaT cells. A: Schematic representation of 
the CpG island and CpG sites in the SORBS2 promoter. For methylation analysis the SORBS2 promoter was divided 
into 2 regions: R1 -2002 to -1561 with 18 CpGs and R2 -106 to +218 with 12 CpGs, the positions are relative to the 
transcription start site. The primers for MSP and BSP are indicated by black and red arrows, respectively. Each CpG 
site is represented by a vertical bar. B: The methylation status of the SORBS2 promoter (R1 and R2) was determined 
by MSP in HaCaT cells with overexpression of DNMT3B and control HaCaT cells. U showed unmethylation-specific 
primer amplification, M showed methylation-specific primer amplification. C: BSP analysis of the SORBS2 promoter 
(R1 and R2) in HaCaT cells with overexpression of DNMT3B and control HaCaT cells. Black circles represent methyl-
ated CpG sites and white circles represent unmethylated CpG sites. 
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Supplementary Figure 3. Methylation analysis of GPR137 promoter in HaCaT cells. A: Schematic representation of 
the CpG island and CpG sites in the GPR137 promoter. For methylation analysis the GPR137 promoter was divided 
into 2 regions: R1 -1280 to -944 with 36 CpGs and R2 -587 to -201 with 19 CpGs, the positions are relative to the 
transcription start site. The primers for BSP are indicated by black arrows. Each CpG site is represented by a verti-
cal bar. B: BSP analysis of the GPR137 promoter (R1 and R2) in HaCaT cells with overexpression of DNMT3B and 
control HaCaT cells. Black circles represent methylated CpG site and white circles represent unmethylated CpG site. 
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