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Abstract

The aim of this paper is to obtain new inequalities involving the
harmonic index H(G) to other well-known topological indices. More-
over, we show that the computation of the harmonic index is reduced
to the computation of the primary subgraphs obtained by a general
decomposition of G.

Mathematics Subject Classification: 05C07, 92E10

Keywords: Harmonic index, Zagreb index, Topological indices

1 Introduction

A topological index is defined as a number that represents a chemical structure
in graph-theoretical terms via the molecular graph, this number is used to un-
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derstand some physicochemical properties of chemical compounds. Many topo-
logical indices have been introduced and studied: the Geometric-Arithmetic
(see, e.g., [9], [4], [12], [14]), sum-connectivity (see, e.g., [6], [17], [18]), 1st and
2nd Zagrev (see, e.g., [1], [2], [3], [7]) and Randić indices are a few examples of
these concepts. Recall that the Randić index is, the best know index, defined
as:

R(G) = ∑
uv∈E(G)

1
√

degu ⋅ deg v
,

and many mathematical properties of this graph invariant have been studied
since its definition, as we can see by the hundreds of papers written about it
(see, e.g., [9], [10], [11], [13]), and the references therein).

Through the paper we consider graphs G = (V (G),E(G)) simple and con-
nected, with n = ∣V (G)∣ and m = ∣E(G)∣, we will denote by dv the degree of
the vertex v in V (G). The concept of harmonic index was introduced in graph
theory recently, but it has shown to be useful (see, e.g., [5], [12], [15], [16] and
the references therein). Given a graph G, the harmonic index of G is defined
as the sum of 2

dv+du
of all edges uv ∈ E(G). The aim of this paper is to obtain

new inequalities involving the harmonic index H(G) and characterize graphs
extremal with respect to them. In particular, we relate H(G) to other well-
known topological indices and we show that the computation of the harmonic
index is reduced to the computation of the primary subgraphs obtained by a
general decomposition of G.

2 The harmonic index and decompositions

As usual, we say that a graph G′ is a subgraph of G if V (G′) ⊂ V (G) and
E(G′) ⊂ E(G). Given a graphG we say that a family of subgraphs {G1, . . . ,Gr}

is a decomposition of G if the following conditions hold

● G = G1 ∪⋯ ∪Gr and

● any two of these subgraphs intersect themselves at most in a vertex, that
is

Gi ∩Gj = {
∅, or;
{v}, for some v ∈ V (G).

The subgraphs are called primary subgraphs of the decomposition.

For a graph G the harmonic index of G is defined as follows:

H(G) = ∑
uv∈E(G)

2

du + dv
,
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where du denotes the degree of the vertex u in G.

For v ∈ V (G) we denote by N(v) the set of neighbors of v, that is,

N(v) = {u ∈ V (G) ∣ uv ∈ E(G)}.

Given a decomposition {G1, . . . ,Gr} of G, we fix the following notation: W
is the set of vertices v ∈ G belonging at least to two Gi’s, given a vertex v ∈W,
Gi1 , . . . ,Gik is the set of primary subgraphs containing v and dij the number
of neighbors of v in Gij (thus dv = di1 +⋯ + dik). If v ∈W, we define W (v) as

W (v) = ∑
u∈NG(v)−W

2

du + dv
−

k

∑
j=1

∑
u∈NGij

(v)−W

2

dju + dijv
.

Z denotes the set of edges in G with both endpoints in W. If e = uv ∈ Z, then
e ∈ Gi for a unique i, and d∗u, d

∗

v denote the degrees of u, v in Gi, respectively.
If e = uv ∈ Z, we define Z(e) as

Z(e) =
2

du + dv
−

2

d∗u + d
∗

v

.

The following result allows to compute the precise value of H(G) in terms
of the harmonic indices of the primary subgraphs in any decomposition.

Theorem 2.1. Let {G1, . . . ,Gr} be a decomposition of the graph G. Then

H(G) =
r

∑
i=1

H(Gi) + ∑
v∈W

W (v) +∑
e∈Z

Z(e).

Proof. First of all, note that if u, v ∉W and uv ∈ E(G), then the term in H(G)

corresponding to uv in G is equal to its corresponding term in ∑
r
i=1H(Gi).

For each v ∈ W and u ∉ W with uv ∈ E(G), W (v) replaces in the sum

∑
r
i=1H(Gi) the corresponding term to uv by its correct value as edge in G.

This fact holds since the degree of u is du both in G and in its (unique) corre-
sponding primary subgraph.
Finally, for each u, v ∈W with uv ∈ E(G), Z(uv) replaces in the sum∑

r
i=1H(Gi)

the corresponding term to uv by its correct value as edge in G.

In order to estimate the difference between H(G) and ∑
r
i=1H(Gi), Proposi-

tion 2.1 will provide bounds for W (v) and Z(uv). We state first the following
elemental facts.

Lemma 2.1. Given a ∈ Z+, let ga be the function defined as

ga(x) =
2

a + x
.
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Then ga strictly decreases in [1,∞) and

∣g′a(x)∣ ≤
2

(a + 1)2

for every x ∈ [1,∞).

Lemma 2.2. Let g ∶ [a, b] × [a, b] → R be the function defined by

g(x, y) =
2

x + y

with 0 < a ≤ b. Then
1

b
≤ g(x, y) ≤

1

a

and g(x, y) = g(x′, y′) if and only if x + y = x′ + y′.

Given a decomposition {G1, . . . ,Gr} of G and e = uv ∈ Z, we say that e is
maximal or minimal if du = dv or d∗u = d

∗

v , respectively.
Given a graph G, ∆ and δ denote the maximum and minimum degrees of G,
respectively.

Proposition 2.1. Let {G1, . . . ,Gr} be a decomposition of the graph G. Given
e ∈ Z, denote by ∆e, δe the maximum and minimum degrees of the primary
subgraph Gi with e ∈ Gi, respectively. Then

1. −1 ≤ 1
∆ − 1 ≤ Z(e) ≤ 0, for any e ∈ Z;

2. ∣W (v)∣ ≤ 2dv
δ+1(dv − 1), for every v ∈W.

Proof. We know that dx ≥ d∗x for any x ∈ V , thus du+dv ≥ d∗u+d
∗

v which implies

Z(e) =
2

du + dv
−

2

d∗u + d
∗

v

≤ 0

for e = uv ∈ Z. Moreover d∗x ≥ 1, for x ∈ V , implies d∗u + d
∗

v ≥ 2 so that

2

du + dv
− 1 ≤

2

du + dv
−

2

d∗u + d
∗

v

= Z(e),

but ∆ ≥ dx, then
1

∆
− 1 ≤

2

du + dv
− 1

and clearly −1 ≤ 1
∆ − 1.

For the second part the Mean Value Theorem and Lemma 2.1 give

∣ga(dv) − ga(dij)∣ = ∣ga(t)∣(dv − dij)
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for some t ∈ (dij , dv). Taking a = du we obtain

∣gdu(dv) − gdu(dij)∣ = ∣gdu(t)∣(dv − dij),

but ∣g′a(x)∣ ≤
2

(a+1)2 , thus

∣
2

du + dv
−

2

du + dij
∣ ≤

2

(du + 1)2
(dv − dij) ≤

2

(du + 1)2
(dv − 1)

finally δ ≤ du gives

∣W (v)∣ ≤
2dv

(δ + 1)2
(dv − 1).

Now observe that since gdu decreases in [dij ,∞] and dij ≤ dv ≤ du, then

gdu(dij) ≥ gdu(dv)

or equivalently
2

du + dij
≥

2

du + dv

thus W (v) ≤ 0, for every v ∈ W. The following result is a direct consequence
of this fact and Theorem 2.1.

Proposition 2.2. Let {G1, . . . ,Gr} be a decomposition of the graph G. If
dv ≤ du for every v ∈W and u ∈ NG(v) −W, then

H(G) ≤
r

∑
i=1

H(Gi).

Proof. As we said before, by Theorem 2.1 we know

H(G) =
r

∑
i=1

H(Gi) + ∑
v∈W

W (v) +∑
e∈Z

Z(e),

but W (v), Z(e) ≤ 0 for w ∈W and e ∈ Z, hence

H(G) ≤
r

∑
i=1

H(Gi).

Corollary 2.1. Let {G1, . . . ,Gr} be a decomposition of the graph G with min-
imum degree δ. If dv = δ for every v ∈W, then

H(G) ≤
r

∑
i=1

H(Gi).
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3 Harmonic index versus other indices

The following theorems give relations between harmonic index and other in-
dices. Recall that the forgotten topological index is defined as F (G) = ∑u∈V (G) d

3
u

(see [8]).

Theorem 3.1. For any graph G,

m(δ + 2) −
F (G)

∆
≤H(G) ≤

F (G)

2δ3
.

Proof. Since (du − dv)2 + (du − 1)2 + (dv − 1)2 ≥ 0, we have

(d2
u + d

2
v) + 1 ≥ (dudv) + (du + dv).

Thus,
(d2

u + d
2
v) + 1 ≥ (dudv) + (du + dv),

d2
u + d

2
v

du + dv
+

1

du + dv
≥

dudv
du + dv

+ 1.

Using that
F (G) = ∑

u∈V (G)

d3
u = ∑

uv∈E(G)

(d2
u + d

2
v),

we get d2u+d
2
v

du+dv
≤
d2u+d

2
v

2∆ and dudv
du+dv

≥ δ
2 . We have,

∑
uv∈E(G)

d2
u + d

2
v

2∆
+ ∑
uv∈E(G)

1

du + dv
≥ ∑
uv∈E(G)

δ

2
+ ∑
uv∈E(G)

1.

Therefore,
F (G)

2∆
+H(G) ≥m(δ + 2).

In another hand,
2

du+dv

d2
u + d

2
v

=
2

(du + dv)(d2
u + d

2
v)
.

Since d2
u + d

2
v ≥ 2dudv,

2
du+dv

d2
u + d

2
v

≤
1

2δ3
.

For the following results, recall that first and second Zagreb indices are
given by

M1(G) = ∑
v∈V (G)

dv
2 and M2(G) = ∑

uv∈E(G)

dudv.
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Proposition 3.1. For any graph G,

F (G) +m ≥M1(G) +M2(G).

Proof. Since (du − dv)2 + (du − 1)2 + (dv − 1)2 ≥ 0, we have

∑
uv∈E(G)

(d2
u + d

2
v) + ∑

uv∈E(G)

1 ≥ ∑
uv∈E(G)

(dudv) + ∑
uv∈E(G)

(du + dv).

Therefore,
F (G) +m ≥M1(G) +M2(G).

Theorem 3.2. For any graph G the following inequality holds:

δm2

M2(G)
≤H(G) ≤

M2(G)

δ3
.

And the equality is attained if and only if G is regular.

Proof. First note that du+dv
dudv

≤ 2
δ . Since, ∑uv∈E(G) dudv =M2(G), we have

∑
uv∈E(G)

(du + dv) ≤
2

δ
M2(G)

and Cauchy-Schwarz inequality gives

m2 =
⎛

⎝
∑

uv∈E(G)

√
du + dv

√
du + dv

⎞

⎠

2

≤
⎛

⎝
∑

uv∈E(G)

1

du + dv

⎞

⎠

⎛

⎝
∑

uv∈E(G)

(du + dv)
⎞

⎠

=
M2(G)

δ
∑

uv∈E(G)

2

du + dv
=
M2(G)H(G)

δ
.

Note that,
2

du+dv

dudv
=

2

(du + dv)(dudv)
≤

2

2
√
dudv(dudv)

≤
1

δ3
.

Thus, 2
du+dv

≤ dudv
δ3 and H(G) ≤

M2(G)
δ3 .

Furthermore, the Cauchy-Schwarz inequality becomes an equality if and only
if there is a non-zero constant µ such that, for every uv ∈ E(G),

1
√
du + dv

= µ
√
du + dv, (3.1)
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that is, du + dv = µ−1. Thus, for any uv, uw ∈ E(G) we get

µ−1 = du + dv = du + dw,

which implies dv = dw. So equality 3.1 is equivalent to the following assertion:
for each vertex u ∈ V (G) every neighbor of u has the same degree. G connected
implies that this holds if and only if G is regular.

The following elementary lemma will be useful for our purposes.

Lemma 3.1. Let g ∶ [a, b] × [a, b] → R be the function given by

g(x, y) =
2
√
xy

x + y
,

with 0 < a ≤ b. Then
2
√
ab

a + b
≤ g(x, y) ≤ 1.

The equality in the lower bound is attained if and only if either x = a and y = b
or x = b and y = a; and the equality in the upper bound is attained if and only
if x = y.

And now recall that the Randić index is given by

R(G) = ∑
uv∈E(G)

1

dudv
.

Theorem 3.3. For any graph G the following inequalities hold:

2
√

∆δ

∆ + δ
R(G) ≤H(G) ≤ R(G) and H(G) ≤

n

2
.

And the equality in the first inequality is attained if and only if G is regular or
(∆, δ)−biregular; the equality in the other inequalities is attained if and only if
G is regular.

Proof. By previous lemma, taking a = δ and b = ∆ we have

2
√

∆δ

∆ + δ
≤

√
dudv

1
2(du + dv)

=

2
du+dv

1
√

dudv

≤ 1,

for any uv ∈ E(G), hence

2
√

∆δ

∆ + δ

1
√
dudv

≤
2

du + dv
≤

1
√
dudv

,
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obtaining the first and second inequalities summing over uv ∈ E(G).
This lemma also guaranties that the equality in the first inequality is attained
if and only if for each uv ∈ E(G) either du = δ and dv = ∆ or viceversa, which
happens if and only if G is a regular graph or a (∆, δ)−biregular graph.
Again the lemma asserts that equality in the second inequality is attained if
and only if du = dv for each uv ∈ E(G), which happens if and only if G is a
regular graph.
Next, again as in the sum ∑uv∈E(G)(du + dv) each term du appears exactly du
times we get

∑
uv∈E(G)

(
1

du
+

1

dv
) = ∑

u∈V (G)

du
1

du
= n.

Using the fact that for every x, y > 0

2

x + y
≤

1

2
(

1

x
+

1

y
)

we obtain

H(G) = ∑
uv∈E(G)

2

du + dv
≤ ∑
uv∈E(G)

1

2
(

1

du
+

1

dv
) =

n

2
.

Thus we have H(G) = n
2 if and only if

2

du + dv
=

1

2
(

1

du
+

1

dv
)

for each uv ∈ E(G), that is, du = dv for each uv ∈ E(G).

Theorem 3.4. For any graph G the following inequality holds:

1

2∆2
M1(G) ≤H(G) ≤

1

2δ2
M1(G).

And the equality in each equality is attained if and only if G is regular.

Proof. We know that

1

∆2
≤

4

(du + dv)2
=

2
du+dv
du+dv

2

≤
1

δ2

for every uv ∈ E(G). Then

1

∆2

du + dv
2

≤
2

du + dv
≤

1

δ2

du + dv
2

and since

∑
uv∈E(G)

(du + dv) = ∑
u∈V (G)

du
2
=M1(G)

we obtain the inequalities by summing over uv ∈ E(G).
The equality in the first inequality is attained if and only if 1

2(du + dv) = ∆,
for every uv ∈ E(G), that is, du = ∆ for every u ∈ V (G). Analogously for the
second inequality.
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