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Abstract

Let G = (V,E) be a graph; a set S ⊆ V is a total k-dominating set if
every vertex v ∈ V has at least k neighbors in S. The total k-domination
number γkt(G) is the minimum cardinality among all total k-dominating
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1. Introduction

We begin by stating some notation and terminology. Let G = (V,E) denote
a simple graph of order n = |V | and size m = |E|. The open neighborhood

of a vertex v ∈ V is N(v) = {u ∈ V : u ∼ v}, where u ∼ v means that u

and v are adjacent vertices, and the closed neighborhood is N [v] = N(v) ∪ {v}.
The degree of a vertex v ∈ V will be denoted by deg(v) = |N(v)|, and δ and
∆ will be the minimum and maximum degree of the graph, respectively. The
graph G[S] is the subgraph induced by a set S ⊆ V , and, for any vertex v ∈ V ,
NS(v) = {u ∈ S : u ∼ v} and degS(v) = |NS(v)|. The complement of the
vertex-set S in V is denoted by S, so that NS(v) is the set of neighbors v has
in S = V \ S. Finally, for every A,B ⊆ V we denote by E(A,B) the number of
edges from vertices in A to vertices in B.

Given a graph G = (V,E), we are interested in finding the minimum cardi-
nality of a set S ⊆ V such that every vertex in V has at least k neighbors in S.
This number has been studied by different authors using different names. For
instance, in [5] it is called k-total k-domination number and denoted by γk,k(G),

in [4] it is called total k-tuple domination number and denoted by γ
(×k)
t (G), in

[12] it is called k-tuple total domination number and denoted by γ×k,t(G), and,
more recently, in [6] and [15] it is called total k-domination number. We will
follow the notation given in [6], and we will use γkt(G) for the total k-domination
number.

A set S ⊆ V is a k-dominating set if every vertex v ∈ V \ S satisfies
degS(v) ≥ k. The k-domination number γk(G) is the minimum cardinality among
all k-dominating sets (see [9, 10]). The domination number is the 1-domination
number, denoted by γ(G). A set S ⊆ V is a total k-dominating set if every vertex
v ∈ V satisfies degS(v) ≥ k. In such a case, it is necessary to have k ≤ δ and
|S| ≥ k + 1. The total k-domination number γkt(G) is the minimum cardinality
among all total k-dominating sets. A total dominating set is a total 1-dominating
set, and the total domination number, denote by γt(G), is the minimum cardinal-
ity among all total dominating sets, that is, γt(G) = γ1t(G) (see [11, 14]). A set
S ⊆ V is a k-tuple dominating set if every vertex v ∈ V satisfies |N [v] ∩ S| ≥ k.
The k-tuple domination number γ×k(G) is the minimum cardinality among all
k-tuple dominating sets (see [3, 7, 8]). From the definitions we can directly obtain
that γk(G) ≤ γ×k(G) and γ(k−1)t(G) ≤ γ×k(G) ≤ γkt(G).

2. Basic Results on the Total k-Dominating Set

The following lemmas will be very useful throughout this paper.
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Lemma 1 ([12]). If k = δ and v is a vertex such that deg(v) = δ, then N(v) is

included in every total k-dominating set.

Corollary 2. If k = δ and there exist two adjacent vertices v1 and v2 of minimum

degree, then v1 and v2 belong to every total k-dominating set.

Lemma 3. Let G be a graph and S be a total k-dominating set in G. If |S| =
γkt(G), then for all v ∈ S there exists u ∈ N(v) such that degS(u) = k.

Proof. If there exists v ∈ S such that every u ∈ N(v) satisfies degS(u) ≥ k + 1,
then S′ = S \ {v} would be a total k-dominating set, a contradiction.

It is known (see [16]) that

γ1t(Pn) = γ1t(Cn) =

{

n
2 + 1 if n ≡ 2 (mod 4),
⌈

n
2

⌉

otherwise.

The following proposition shows closed formulas for the total k-domination num-
bers for well known graphs.

Proposition 4. For the complete graph Kn, the cycle Cn and the wheel Wn with

n vertices we have the following total k-domination numbers

(a) γkt(Kn) = k + 1;

(b) γ2t(Cn) = n;

(c) γ1t(Wn) = γt(Wn) = 2, γ3t(Wn) = n and

γ2t(Wn) =

{

n−1
2 + 2 if n ≡ 3 (mod 4),

⌈

n−1
2

⌉

+ 1 otherwise.

Proof. (a) and (b) were proved in [12] and [17], respectively. By Corollary 2
we have γ3t(Wn) = n. In a wheel graph, any set of two vertices containing
the vertex of degree n − 1 is a total 1-dominating set. Hence γ1t(Wn) = 2. If
V (Wn) = {v1, v2, . . . , vn} where v1 ∼ vi for every i = 2, . . . , n, then v1 belongs to
any total 2-dominating set of cardinality at most n − 2. Since v1 is adjacent to
every vertex in the graph,

γ2t(Wn) = γ1t(Cn−1) + 1 =

{

n−1
2 + 2 if n ≡ 3 (mod 4),

⌈

n−1
2

⌉

+ 1 otherwise.

The wheel graph shows that it is not possible to find a relation γkt(G) ≤
g(k)γ(k−1)t(G). It would be necessary to use another parameter in the function g.

Proposition 5. If G is a graph of order n and minimum degree δ, then γkt(G) ≤
n− δ + k.
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Proof. We see that every set S ⊆ V such that |S| ≥ n − δ + k is a total k-
dominating set. Since |S| ≤ δ − k for any vertex v ∈ V , we have

δ ≤ degS(v) + degS(v) ≤ degS(v) + δ − k.

Consequently, degS(v) ≥ k.

This upper bound is attained for any k in any complete graph. If k = δ the
bound is attained in any graph satisfying the conditions given in Proposition 7.

Theorem 6. Let G be a graph of order n and minimum degree δ, and let A =
{v ∈ V : deg(v) = δ}. Then γkt(G) = n if and only if k = δ and A is a total

dominating set.

Proof. If γkt(G) = n, by Proposition 5, we have k = δ. Moreover, since V is
the only total δ-dominating set, every vertex u ∈ V has a neighbor of degree δ.
Otherwise, V \ {u} would be a total δ-dominating set, a contradiction. Finally,
say k = δ, A is a total dominating set and S is a minimum total δ-dominating
set. Since every u ∈ V \S has a neighbor vi ∈ A, it follows that degS(vi) ≤ δ−1.
A contradiction, so S = V .

As a consequence of Theorem 6 every δ-regular graph G of order n satisfies
γδt(G) = n. Nevertheless, there exist many non-regular graphs satisfying the
same property.

Proposition 7. For every k and n = 2jk, there exists a non-regular graph G

such that its minimum degree is k and γkt(G) = n.

Proof. We consider j copies (i = 1, . . . , j) of the graph presented in Figure 1 and

we join
{

v11,1, v
2
1,1, . . . , v

k−1
1,1 , v12,1, . . . , v

k−1
2,1 , . . . , vk−1

j,1

}

and
{

v11,2, v
2
1,2, . . . , v

k−1
1,2 , v12,2,

. . . , vk−1
2,2 , . . . , vk−1

j,2

}

to obtain two complete graphs of order j(k − 1). Since ui,1

and ui,2 are adjacent two vertices of minimum degree, by Lemma 1 and Corollary
2, the graph obtained satisfies γkt(G) = n.

Figure 1.
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Theorem 8. Let S be a total k-dominating set in a graph G. If degS(v) = k for

every v ∈ S and
∑

v∈S degS(v) ≤ k|S|+ k − 1, then |S| = γkt(G).

Proof. We assume that S′ is a minimum total k-dominating set such that |S′| <
|S|. If S′ ⊂ S, there exist u ∈ S \ S′ and v ∈ NS(u) such that degS(v) = k and
degS′(v) < k, a contradiction. Hence S′ * S. Since S is a total k-dominating
set and

∑

v∈S degS(v) ≤ k|S| + k − 1, we have that E(A,S) ≤ |A|k + k − 1 for

every set A ⊆ S. If {ui1 , . . . , uij} = S′ ∩ S, then |S′ ∩ S| ≤ |S| − j − 1, thus

E
(

S′ ∩ S, S
)

≤ (|S| − j − 1)k + k − 1. Since every u ∈ S must have at least k

neighbors in S′, we have E(S, S′) ≥ |S|k. On the other hand, every vertex in
{ui1 , . . . , uij} has k neighbors in S, so E(S ∩ S′, S) = jk. Therefore,

(|S| − j)k − 1 = (|S| − j − 1)k + k − 1 ≥ E
(

S, S′ ∩ S
)

= E(S, S′)− E(S, S ∩ S′) = (S, S′)− E(S ∩ S′, S)

≥ |S|k − jk = (|S| − j)k,

a contradiction. Consequently, |S| = γkt(G).

As a consequence, we obtain the following corollary.

Corollary 9. If S is a set such that degS(v) = k for every v ∈ V , then S is a

total k-dominating and |S| = γkt(G).

Finding a total k-dominating set in a given graph is relatively easy. However,
to determine whether such a set has minimum cardinality is more challenging. In
this sense, these two results are very useful because, in many cases, they let us
identify the minimum set without proving it. For example, we can find a set S

in the Cartesian products Pj�Cn when j is an odd number, or in Cj�Cn when
j is an even number, satisfying the conditions given in this corollary when k = 2
(see [1]). The last corollary is also very useful to construct an infinite number
of graphs with a given total k-domination number. If we consider a k-regular
graph G′ = (V ′, E′) and another graph G = (V,E) such that V ′ ⊆ V , E′ ⊆ E,
G′ is an induced subgraph of G and every v ∈ V \ V ′ satisfies degV ′(v) = k, then
γkt(G) = |V ′|. This is what happens in Figure 2 on the left side, where k = 3
and V ′ = {u1, . . . , u6}.

In the graph on the right side in Figure 2, the set S containing the black
vertices is a total 2-dominating set such that every vertex u ∈ V \ {v} satisfies
degS(u) = 2. Although S does not satisfy the condition in Corollary 9, it does
satisfy the conditions in Theorem 8. Hence S is a minimum total 2-dominating
set.

Moreover, note that the conditions given in Theorem 8 are necessary. In the
graph on the left showed in Figure 3, the black vertices form a total 2-dominating
set. Since u and v satisfy degS(u) = degS(v) = 3, we can find a smaller total
2-dominating set represented by the grey vertices in the graph on the right side.
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Figure 2.

Figure 3.

3. Bounds for the Total k-Domination Number of a Graph

It was proved in [6] and [13] that for any graph G = (V,E) of order n and
maximum degree ∆ it holds γkt(G) ≥ kn

∆ , and there are many graphs attaining
this lower bound. In order to get a better lower bound using the same parameters,
it is necessary to give additional conditions on the graph.

A packing of a graph G is a set of vertices in G that are pairwise at distance
more than two. The packing number ρ(G) of a graph G is the size of a largest
packing in G. For every graph G, ρ(G) ≥ 1. We have ρ(G) ≤ γ(G) because,
for every vertex v in a packing set, N [v] must contain at least one vertex of the
dominating set. Therefore, since an upper bound for the domination number is a
half of the order n, we have ρ(G) ≤ n

2 . This upper bound for the packing number
will be needed in the proof of the next result.

Theorem 10. Let G = (V,E) be a graph of order n and maximum degree ∆ and

let A = {v ∈ V : deg(v) = ∆}. Then

γkt(G) ≥
⌈

kn− |A|
∆− 1

⌉

.

Moreover, if A is a packing of G, then γkt(G) ≥
⌈

2kn
2∆−1

⌉

.
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Proof. Let S be a total k-dominating set and d1, . . . , d|S| the degrees of the
vertices of S. Since

d1 + · · ·+ d|S| − k(n− |S|)
2

≥
d1 + · · ·+ d|S| − E

(

S, S
)

2
= m(G[S]) ≥ k|S|

2
,

we have

kn ≤ d1 + · · ·+ d|S| ≤ |A ∩ S|∆+ (|S| − |A ∩ S|)(∆− 1) = |S|(∆− 1) + |A ∩ S|.

It follows that |S| ≥ kn−|A∩S|
∆−1 ≥ kn−|A|

∆−1 . Now, if A is a packing of G, then A ∩ S

is a packing in G[S]. Therefore we have |A ∩ S| ≤ ρ(G[S]) ≤ |S|
2 . Using this in

the above inequality we have

|S| ≥ kn− |A ∩ S|
∆− 1

≥ 2kn− |S|
2(∆− 1)

,

that is, |S| ≥ 2kn
2∆−1 .

Given a minimum total k-dominating (or k-tuple dominating) set S, we will
say that a vertex v ∈ S is a helping vertex of S if degS(v) = 0. We denote by
H(S) the set of all helping vertices of S.

Lemma 11. For every k < δ and every minimum total k-dominating set S, it

holds that |H(S)| ≤ k|S|
k+1 .

Proof. If S is a minimum total k-dominating set, by Lemma 3, we know that for
every vertex v ∈ H(S) there exists u ∈ N(v) ∩ S such that degS(u) = k. Hence
degS(u) ≥ 1, that is, u ∈ S \H(S). So, if we denote Sk = {w ∈ S : degS(w) = k}
(H(S) ∩ Sk = ∅ because k < δ), we have |H(S)| ≤ E (H(S), Sk) ≤ k|Sk| ≤
k(|S| − |H(S)|) or equivalently |H(S)| ≤ k|S|

k+1 .

Notice that the inequality in this lemma is an equality if we consider the
graph showed in Figure 4, where k = 1. In this graph, the set of black vertices is
a minimum total dominating set. We show now that condition k < δ is necessary.
If we consider the graphs formed from a cycle Cr given by v1v2 · · · vrv1 by adding
t new vertices u1, . . . , ut such that ui ∼ v1 and ui ∼ v2 for every i ∈ {1, . . . , t},
then the set S = {v1, . . . , vr} is a minimum total 2-dominating set and |H(S)| =
r − 2 >

2|S|
3 = 2r

3 , for r > 6.

Proposition 12. If G is a graph of order n and S is a minimum total k-

dominating set in G, then

γkt(G) ≥ nk + |H(S)|(∆− k)

∆
.
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Figure 4.

Proof. If S is a minimum total k-dominating set, and H(S) is the set of all
helping vertices of S, then

(n− |S|)k ≤ E
(

S, S
)

≤ (|S| − |H(S)|)(∆− k).

Thus, we have that |S| ≥ nk+|H(S)|(∆−k)
∆ .

Theorem 13. Let G be a graph of order n and maximum degree ∆. If γ(G) >
n(∆−k)

∆ , then

γkt(G) ≥ nk +∆− k

∆
.

Proof. Let S be a minimum total k-dominating set of G. By Proposition 12,
H(S) 6= ∅. Since

n = |S|+ |S| = |S|+ γkt(G) ≥ |S|+ kn

∆
,

we have |S| ≤ n − kn
∆ = (∆−k)n

∆ . If we suppose that H(S) = ∅, then S is a

dominating set and, as a consequence, γ(G) ≤ (∆−k)n
∆ which is a contradiction.

For any graph G = (V,E) of size m and any set A ⊆ V , it holds that

m = m(G[A]) + E
(

A,A
)

+m
(

G
[

A
])

=
1

2

∑

v∈A
degA(v) +

∑

v∈A
degA(v) +

1

2

∑

v∈A

degA(v).

This fact will be used throughout the paper.

Theorem 14. Let G be a graph of size m, order n and minimum degree δ. Then

γkt(G) ≥ min

{

δ,
2(kn−m) + n

k + 1

}

.
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Proof. Let S be a total k-dominating set. If there exists a vertex v ∈ S such
that degS(v) = 0, then degS(v) = deg(v) and γkt(G) ≥ deg(v) ≥ δ.

If every vertex v ∈ S satisfies degS(v) 6= 0, then

2m =
∑

v∈S
degS(v) + 2

∑

v∈S

degS(v) +
∑

v∈S

degS(v)

≥ |S|k + 2(n− |S|)k + n− |S| = −|S|(k + 1) + n(2k + 1).

Thus, |S| ≥ 2(kn−m)+n
k+1 .

Theorem 15. Let G be a graph of size m and maximum degree ∆. If
⌈

∆
2

⌉

≤ k,

then

γkt(G) ≥ max

{

⌈
√
2m+1+1

2

⌉

,

⌈

√

8m+(3(∆−k)−1)2−3(∆−k)+1

2

⌉}

.

Proof. Let S be a total k-dominating set. On one hand, since
⌈

∆
2

⌉

≤ k, we know
that degS(v) ≥ degS(v) for all v ∈ V , and therefore

2m =
∑

v∈S
degS(v) + 2

∑

v∈S

degS(v) +
∑

v∈S

degS(v)

≤
∑

v∈S
degS(v) + 2

∑

v∈S

degS(v) +
∑

v∈S

degS(v)

=
∑

v∈S
degS(v) + 3

∑

v∈S

degS(v) =
∑

v∈S
degS(v) + 3

∑

v∈S
degS(v) ≤ 4

∑

v∈S
degS(v).

Thus, m ≤ 2
∑

v∈S degS(v) ≤ 2|S|(|S| − 1) = 2
(

(

|S| − 1
2

)2 − 1
4

)

. Hence |S| ≥
√
2m+1+1

2 .

On the other hand,

2m ≤
∑

v∈S
degS(v) + 3

∑

v∈S
degS(v) ≤ |S|(|S| − 1) + 3|S|(∆− k).

Therefore |S| ≥
√

8m+(3(∆−k)−1)2−3(∆−k)+1

2 .

Note that for every complete graph Kn, where n = 2k + 1, since 0 ≤ k+

1−
(√

4k2+2k+1+1
2

)

< 1, we have

γkt(Kn) = k + 1 =

⌈
√
2m+ 1 + 1

2

⌉

=

⌈

√

(2k + 1)(2k) + 1 + 1

2

⌉

.
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Moreover, for a complete graph Kn, where n = 2k + 1, we have

√

8m+ (3(∆−k)−1)2−3(∆−k) + 1

2
=

√

4(2k + 1)(2k) + (3k−1)2−3k + 1

2

=

√
25k2 + 2k + 1− 3k + 1

2
.

Since 0 ≤ k + 1−
(√

25k2+2k+1−3k+1
2

)

< 1, we also have

γkt(Kn) = k + 1 =

⌈

√

8m+ (3(∆− k)− 1)2 − 3(∆− k) + 1

2

⌉

.

The girth of a graph G, denoted by g(G), is the length of the shortest cycle
contained in G.

Proposition 16. If G is a graph with girth g(G) and k ≥ 2, then

γkt(G) ≥ (g(G)− 2)(k − 1) + 2.

Proof. Firstly, if S is a total k-dominating set with k ≥ 2, then G[S] contains
a cycle Cp. For any two vertices u, v ∈ V (Cp) such that dCp(u, v) ≤ g(G) − 3 it
holds N(u) ∩ N(v) ∩ (V \ V (Cp)) = ∅. If we take g(G) − 2 consecutive vertices
{u1, . . . , ug(G)−2} in V (Cp) then, since N(ui)∩ (S \ {u1, . . . , ug(G)−2}) ≥ k− 2 for
every i ∈ {2, . . . , g(G) − 3}, we get N(u1) ∩ (S \ {u1, . . . , ug(G)−2}) ≥ k − 1 and
N(ug(G)−2) ∩ (S \ {u1, . . . , ug(G)−2}) ≥ k − 1. We obtain that |S| ≥ g(G) − 2 +
2(k − 1) + (g(G)− 4)(k − 2) = (g(G)− 2)(k − 1) + 2.

If k = 2, note that the lower bound in the above proposition is attained for
every cycle Cn. If k = 3, this lower bound is attained in the graph G showed in
Figure 2, where g(G) = 4. The minimum total 3-dominating set is given by black
vertices.

The chromatic number of a graph G is the smallest number of colors χ(G)
needed to color the vertices of G so that no two adjacent vertices share the same
color. Following the ideas showed in [12, Theorem 7] we obtain the next result.

Proposition 17. Let G be a graph with chromatic number χ(G). Then

γkt(G) ≥ kχ(G)

χ(G)− 1
.

Proof. If c = χ(G), then V (G) can be partitioned into c independent sets Vi.
Let S be a total k-dominating set in G. If Si = S ∩ Vi, every vertex in Vi has
at least k vertices in S \ Si, that is, |S| − |Si| ≥ k. Consequently, (c − 1)|S| =
c|S| − (|S1|+ · · ·+ |Sc|) ≥ ck.
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Note that the lower bound given in the above proposition is attained in the
graph given in Figure 2 for k = 3, because we can partition the vertex set in
two independent sets {v1, . . . , vj , u4, u5, u6} and {u1, u2, u3, vj+1, . . . , vn−6}. So
χ(G) = 2.

Theorem 18. Let G be a graph of order n, minimum degree δ and maximum

degree ∆. For every k < δ it holds that

γkt(G) ≤ ∆(k + 1)n

∆(k + 1) + 1
.

Proof. Let S be a minimum total k-dominating set. As we have seen in the
proof of Lemma 12, V \ S is a dominating set in G[V \H(S)]. Hence n− |S| ≥
γ(G[V \H(S)]) ≥ n−|H(S)|

∆+1 , and consequently

n∆ ≥ |S|(∆ + 1)− |H(S)| ≥ |S|(∆ + 1)− k|S|
k + 1

=

(

k∆+∆+ 1

k + 1

)

|S|.

The upper bound given in the theorem above is attained, for instance, in the
cycle C6 when k = 1, and in the complete graph Kn when k = n− 2.

Proposition 19. Let G be a graph of order n, minimum degree δ and maximum

degree ∆. For every k < δ it holds that

γkt(G) ≤ n−
⌈

γ(G)

∆

⌉

.

Proof. In the proof of the above theorem we have seen that n∆ ≥ |S|(∆ +
1) − |H(S)|. As we saw in the proof of Lemma 12, S \ H(S) is a dominating
set, thus |S| − |H(S)| ≥ γ(G). Using this in the inequality above we obtain

n∆ ≥ ∆|S|+ γ(G), thus |S| ≤ n− γ(G)
∆ .

The upper bound given in the last proposition is also attained in the complete
graph Kn when k = n− 2.

We saw in Proposition 5, without any condition on the graph, that γkt(G) ≤
n − δ + k. If we want to improve this upper bound we will have to give some
additional conditions on the graph.

Proposition 20. Let G be a graph of order n and minimum degree δ. Suppose

there exist a vertex v ∈ V and {u1, . . . , ur} ⊆ N(v), where r ≥ deg(v) − δ + k,

such that deg(ui) ≥ δ + 1, for 1 ≤ i ≤ r. Then γkt(G) ≤ n− δ + k − 1.

Proof. If N(v)=
{

u1, . . . , ur, ur+1, . . . , udeg(v)

}

, we prove that S = V \
{

v, ur+1,

. . . , udeg(v)

}

is a total k-dominating set. Firstly, for every i = r + 1, . . . , deg(v),
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degS(ui) ≤ δ−k; hence degS(ui) ≥ k. Secondly, for every i = 1, . . . , r, degS(ui) ≤
δ − k + 1; hence degS(ui) ≥ δ + 1 − (δ − k + 1) = k. Finally, for every vertex
w ∈ S \ {u1, . . . , ur} it follows that degS(w) ≤ δ − k, and hence degS(w) ≥
δ − (δ − k) = k. Therefore, γkt(G) ≤ |S| ≤ n− δ + k − 1.

Theorem 21. If G is a graph of order n and minimum degree δ, then

(a) for every k ≤ δ − 1 we have γkt(G) ≤ n− ρ(G),

(b) for every k ≤ δ we have kρ(G) ≤ γkt(G).

Proof. If A = {u1, . . . , us} is a packing in G such that s = ρ(G) and we consider
S = V \ A, then degS(ui) ≥ δ ≥ k + 1. Since no vertex in S can have two
neighbors in A, G[S] is a graph with minimum degree greater than or equal to
k. Thus S is a total k-dominating set, and hence γkt(G) ≤ |S| = n− ρ(G).

Now, let S be a minimum total k-dominating set of G. Notice that |N(ui)∩
S| ≥ k for all 1 ≤ i ≤ s. Since N(ui) ∩N(uj) = ∅ for i 6= j and 1 ≤ i, j ≤ s, we
deduce that |S| ≥ ∑s

i=1 |N(ui) ∩ S| ≥ kρ(G). Therefore, γkt(G) ≥ kρ(G).

The upper bound given in Theorem 21(a) is attained for k = 2 in the following
family of graphs. We consider a cycle C3r whose vertices are {u1, . . . , u3r}, and
a set of vertices {v1, . . . , vr} such that N(vi) = {u3i−2, u3i−1, u3i} (see Figure 5).
In such a graph, {v1, . . . , vr} and {u1, . . . , u3r} are a maximum packing set and
a minimum 2-dominating set, respectively.

Figure 5. Graphs where γ2t(G) = n− ρ(G).

The lower bound given in Theorem 21(b) is attained for k = 3 in the fol-
lowing family of graphs. We consider a complete graph K3r whose vertices are
{u1, . . . , u3r}, and a set of vertices {v1, . . . , vr} such that N(vi) = {u3i−2, u3i−1,

u3i} (see Figure 6). We have that {v1, . . . , vr} and {u1, . . . , u3r} are a maximum
packing set and a minimum 3-dominating set, respectively.

Corollary 22. If G is a graph of order n, minimum degree δ and diameter D(G),

then for every k ≤ δ − 1 we have γkt(G) ≤ n−
⌈

D(G)
3

⌉

.
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Figure 6. Graphs with γ3t(G) = 3 ρ(G).

4. Total k-Domination Number and Other Domination Parameters

We show in this section some relations between the total k-domination number
and the total domination number, the k-domination number and the k-tuple
domination number.

Notice that if S is a total k-dominating set and v ∈ S, then S \ {v} is a total
(k − 1)-dominating set, so γkt(G) ≥ γ(k−1)t(G) + 1. Consequently,

γkt(G)≥γ(k−1)t(G) + 1 ≥ γ(k−2)t(G) + 2 ≥ · · · ≥ γ1t(G) + k −1= γt(G) + k − 1.

All these inequalities become equalities when we consider a complete graph.

Lemma 23. Let G be a graph of order n and let v1, . . . , vp be vertices of degree

n− 1.

(a) If k ≤ p− 1, then {v1, . . . , vk+1} is a minimum total k-dominating set.

(b) If k ≥ p, then there exists a minimum total k-dominating set S such that

{v1, . . . , vp} ⊆ S.

Proof. (a) Since γkt(G) ≥ k + 1 and k + 1 ≤ p, it follows that {v1, . . . , vk+1} is
a minimum total k-dominating set.

(b) If k ≥ p and there exist a minimum total k-dominating set S and two
vertices u ∈ S and v ∈ V \S such that deg(u) < n− 1 = deg(v), then (S \ {u}) ∪
{v} is also a minimum total k-dominating set S.

The above lemma and the following theorem are very useful in order to find
a minimum total k-dominating set in some particular graphs. If the graph has
order n and contains a vertex v whose degree is equal to n−1, this vertex can be
taken into the set we are looking for and we can continue looking for a minimum
total (k− 1)-dominating set in the graph induced by V \ {v}. This idea was also
used in the proof of Proposition 4 for the wheel graph.

Theorem 24. Let G be a graph of order n, v1, . . . , vp be vertices of degree n− 1,
and G′ = G[V \ {v1, . . . , vp}]. It follows that
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(a) If k ≤ p, then γkt(G) = k + 1.

(b) If k ≥ p+ 1, then γkt(G) = γ(k−p)t(G
′) + p.

Proof. (a) If k ≤ p − 1 then, by Lemma 23, we the result follows. If k = p

for every u ∈ V \ {v1, . . . , vp}, we have that {v1, . . . , vp, u} is a minimum total
k-dominating set.

(b) If we consider the minimum total (k−p)-dominating set S in the induced
subgraph G′ = G[V \ {v1, . . . , vp}], we see that the set S′ = S ∪ {v1, . . . , vp} is a
total k-dominating set in G. Every vertex u ∈ V \{v1, . . . , vp} has k−p neighbors
in S, so degS′(u) ≥ |{v1, . . . , vp}|+k−p = k. For every vi ∈ {v1, . . . , vp} we have
degS′(vi) = |S|+p−1 ≥ k−p+1+p−1 = k. Therefore, γkt(G) ≤ γ(k−p)t(G

′)+p.
Finally, by Lemma 23, if S is a minimum total k-dominating set in G, then we
can suppose {v1, . . . , vp} ⊆ S and denote S0 = S \ {v1, . . . , vp}. If there exists a
vertex u ∈ V (G′) such that degS0

(u) < k − p, then degS(u) = p+ degS0
(u) < k,

a contradiction. Consequently, S0 is a minimum total (k − p)-dominating set in
G′, and therefore,

γkt(G) = |S0|+ p ≥ γ(k−p)t(G
′) + p.

Theorem 25. For every graph G it holds that

γkt(G) ≤ 2γ×k(G)− k + 1.

Moreover, if n and ∆ are the order and maximum degree of G respectively, and

n > k∆2

k−1 , then

γkt(G) ≤ 2γ×k(G)− k.

Proof. Let S be a k-tuple dominating set. If there exists a helping vertex v in S,
then degS(v) ≥ δ ≥ k. Let u ∈ V \ S be a vertex such that NS(u) = {v1, . . . , vj}
with j ≥ k. If we denote A = {v1, . . . , vj , u}, then degS∪{u}(w) ≥ k for every
w ∈ A. Now we need to adapt S \ (H(S) ∪ {v1, . . . , vj}) to obtain a total k-
dominating set. Since every vertex v ∈ S \ (H(S) ∪ {v1, . . . , vj}) has a neighbor
uv ∈ V \ S, if we take the union of set B = {uvj+1 , . . . , uv|S\H(S)|

} and S ∪ {u},
we obtain a new set S′ which is a total k-dominating with cardinality

|S′| = |S|+ 1 + |B| ≤ |S|+ 1 + |S \H(S)| − j = 2|S|+ 1− |H(S)| − j

≤ 2|S| − k + 1.

Consequently, γkt(G) ≤ 2γ×k(G)− k + 1.
When two vertices in S \ (H(S) ∪ {v1, . . . , vj}) have a common neighbor in

V \ S or j > k, it follows that |B| < |S \ H(S)| − j. Then |S′| ≤ 2|S| − k

and, consequently, γkt(G) ≤ 2γ×k(G)− k. Therefore, we can suppose that |B| =
|S \ H(S)| − j and j = k. Now, if all vertices in {v1, . . . , vk} are adjacent to
some vertex of B, it is not necessary to include u in this new set S′. Then its
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cardinality satisfies |S′| = |S|+|B| = |S|+(|S|−|H(S)|−k) = 2|S|−|H(S)|−k ≤
2|S| − k. Otherwise, if a vertex in {v1, . . . , vk}, for instance vk, is not adjacent
to the vertices of B, the number of edges from B to {v1, . . . , vk−1} is at least
|B|(k − 1) = (|S| − |H(S)| − k)(k − 1), but the maximum number of neighbors
that every vi, with i = 1, . . . , k − 1, can have in B is (∆ − 1) − (k − 1). So
(|S| − |H(S)| − k)(k − 1) ≤ (k − 1)(∆ − k) or, equivalently, |S| ≤ ∆ + |H(S)|.
Similarly to Lemma 12, it can be proved that for every k ≤ δ and every minimum
k-tuple dominating set S, it holds |H(S)| ≤ (k−1)|S|

k
. Therefore, we obtain |S| ≤

k∆. Using the fact that γ(k−1)t(G) ≤ γ×k(G) and (k−1)n
∆ ≤ γ(k−1)t(G) (see [6]),

we conclude that (k−1)n
∆ ≤ k∆, which is a contradiction.

There exists an infinite family of graphs Gs satisfying γkt(Gs) = 2γ×k(Gs)−
k+1. In Figure 7 we have a graph with n = 4s+3 and δ = 2. The black vertices
form a minimum 2-tuple dominating set with cardinality 2s+2, and, by Lemma
1, γ2t(Gs) = n.

Figure 7. Family of graphs Gs satisfying γ2t(Gs) = 2γ×2(Gs)− 1.

Proposition 26. Let G be a graph of order n and minimum degree δ. If k < δ,

then

γ×(k+1)(G) ≤ n+ γkt(G)

2
.

Proof. Let S be a minimum total k-dominating set. If u1 ∈ S satisfies degS(u1) =
k, then degS(u1) ≥ 1. We consider S1 = S ∪ {wu1}, where wu1 ∈ S ∩ N(u1).
Now, if u2 ∈ S1 satisfies degS1

(u2) = k, then degS1
(u2) ≥ 1. We consider S2 =

S1 ∪ {wu2}, where wu2 ∈ S1 ∩ N(u2) and continue this process. At the end

we will get a (k + 1)-tuple dominating set of size at most |S| + n−|S|
2 = n+|S|

2 .

Consequently γ×(k+1)(G) ≤ n+γkt(G)
2 .

The inequality in the proposition above is attained for instance in the Carte-
sian product G = P2�C3 with k = 2, where γ×3(G) = 5 and γ2t(G) = 4.

In the next theorem we compare the total k-domination number with the
k-domination number, similarly as we did with the total k-domination number
and the k-tuple domination number in Theorem 25. Given a k-dominating set
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S in a graph G, if for any vertex u ∈ S we take k adjacent vertices in V \ S,
we obtain a total k-dominating set of cardinality (k + 1)|S|. Therefore, we have
γkt(G) ≤ (k + 1) γk(G). A better result though is the following.

Theorem 27. For every graph G it holds that

γkt(G) ≤ (k + 1)γk(G)− k(k − 1).

Proof. Let S be a minimum k-dominating set. We are going to take the union
of some vertices from V \ S and the vertices of S in order to obtain a total k-
dominating set. It is clear that the worst case is when S is an independent set.
If S = {v1, . . . , vr} and we add to S any k vertices from V \ S, we obtain a new
set S′ with cardinality |S| + k such that degS′(v1) + · · · + degS′(vr) ≥ k2 and
0 ≤ degS′(vi) ≤ k for every i ∈ {1, . . . , r}. As we want to have degS′(vi) ≥ k

for every i ∈ {1, . . . , r}, in the worst case we need to add k|S| − k2 vertices from
V \ S′ to S′. This new set will be a total k-dominating set with cardinality at
most |S|+ k + k|S| − k2 = (k + 1)|S| − k(k − 1), and the result follows.

The upper bound given in the theorem above is attained in any complete
bipartite graph Kk,r with r ≥ k, where γkt(G) = 2k and γk(G) = k.
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