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Abstract

The main objective of this study is to propose a discrete approach
to water quality study, applied to freshwater ecosystems, through the
fluctuations in the populations of benthic macroinvertebrates and their
tolerance to pollution.
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1 Introduction

The amount of freshwater around the world is decreasing every day; global
warming stresses the ecosystems, especially the water, an essential resource for
life in our planet. The presence -or absence- of external factors could disrupt
the natural balance of flora and fauna population dynamics. Understanding
the biotic and abiotic factors that play a role in such populations is a matter of
main importance to assess the ecosystem’s health. Water quality monitoring
and assessing is vital in order to identify alterations and take decisions to
restore and preserve freshwater ecosystems.

Living organisms are indicators of the ecosystem’s health and it is very
important to know their qualities and needs. The use of biological indices to
assess the water quality in lotic ecosystems dates from 1908 [7].

There are several studies of water quality, associated with freshwater ecosys-
tems using bioindicators. As an example, it is worth mentioning the Biological
Monitoring Working Party (BMWP) [5], developed to assess the disturbance
level of lotic ecosystems, through the study of aquatic macroinvertebrates.
Likewise, in the research studies from [14],[15] and [9] abundance and diversity
indices were developed with mathematical theoretical support, based on the
populations or communities of organisms.

The BMWP index proposed by Hellawell in 1978 for the evaluation of
water quality in English rivers, proposes tolerance values to organic pollution
associated with certain families of benthic macroinvertebrates. It establishes
the water quality according to the presence or absence of taxonomic groups,
through the sum of their tolerance values, without taking into account the
abundance of each taxon ([6] and [5]), see Table 1.

The BMWP index is used for water quality evaluation together with other
parameters: physicochemical, biological and environmental. Among the most
commonly used, Dissolved Oxygen, Temperature and pH stand out. Through-
out its 38 years of history, it has been applied and adapted in countries such
as The United Kingdom and Spain on the initial phase, followed by Central
Europe, South America and Africa. In recent years Central America, Asia and
some Eastern Europe countries have adapted it. In addition, it has been used
to a large extent in studies of water quality in lotic ecosystems, but in lentic
ecosystems since 2013, which implies that its practice is still valid nowadays.

The development of new technology, such as the Geographic Information
Systems, grants the integration of other descriptors such as: water quality
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Taxa
Families ex. Oligochaeta Score

Siphlonuridae, Heptageniidae, Leptophlebiidae, Ephemerellidae, Potamanthidae, Ephemeridae,
Taeniopterygidae, Leuctridae, Capniidae, Perlodidae, Perlidae, Chloroperlidae, Aphelocheiridae,
Phryganeidae, Molannidae, Beraeidae, Odontoceridae, Leptoceridae, Goeridae, Lepidostomatidae,
Brachycentridae, Sericostomatidae 10
Astacidae, Lestidae, Agriidae, Gomphidae, Cordulegasteridae, Aeshnidae, Corduliidae, Libellulidae,
Psychomyiidae, Philopotamidae 8
Caenidae, Nemouridae, Rhyacophilidae, Polycentropodidae, Limnephilidae 7
Neritidae, Viviparidae, Ancylidae, Hydroptilidae, Unionidae, Corophiidae, Gammaridae, Platycnemididae,
Coenagriidae 6
Mesovelidae, Hydrometridae, Gerridae, Nepidae, Naucoridae, Notonectidae, Pleidae, Corixidae
Haliplidae, Hygrobiidae, Dytiscidae, Gyrinidae, Hydrophilidae, Clambidae, Helodidae, Dryopidae
Elminthidae, Chrysomelidae, Curculionidae, Hydropsychidae, Tipulidae, Simuliidae, Planariidae,
Dendrocoelidae 5
Baetidae, Sialidae, Piscicolidae 4
Valvatidae, Hydrobiidae, Lymnaeidae, Physidae, Planorbidae, Sphaeriidae, Glossiphoniidae, Hirudidae,
Erpobdellidae Asellidae 3
Chironomidae 2
Oligochaeta 1

Table 1: Original Biological Monitoring Working Party Score System, Hawkes
(1998).

regionalization maps, as a tool that facilitates the location of problematic spots
in the aquatic ecosystems, satellite images which allow a thorough ecosystem
assessment and models that allow a spatial and temporal description of the
characteristics of water bodies.

The study of the fluctuations in aquatic fauna communities and its interre-
lations with the environment allows the integration of biotic, physical, chem-
ical and multimetric indices in water quality assessments, which has granted
the BMWP index affinity, at a greater or lesser extent, with more than 100
metrics. The most applied metrics are: BMWP, BMWP’, ASPT, Shannon-
Weaver, Margalef, EPT, WQI and Simpson.

Discrete Mathematics is applied to different fields of knowledge: Social Sci-
ences [13], Ecology [2] and Chemistry [17], among others. In the present work
it will be necessary to embrace the concept of graph and its properties, to
adapt as a mechanism to describe the phenomena associated to water quality
and its quantification. For that reason, the aim of this article is to propose a
discrete approach for the study of water quality, applied to freshwater ecosys-
tems, through the fluctuations of populations of benthic macroinvertebrates
and their tolerance to contamination.

2 Discrete formulation of the BMWP Index

A graph G(V,E) is an ordered pair of disjoint sets of vertices and edges. Each
vertex is represented by a point and the edges by lines connecting two vertices.
Vertex degree v, denotaded by δ(v) is the number of edges e = [v, vi] incidents
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on it. In this case v and vi are called adjacent or neighbors.
A graph G is connected if given two vertices are joined for a path (succes-

sion of adjacent vertices), otherwise it is disconnected. If there is a partition
of V into nonempty subsets V1, V2, . . . Vr such that two vertices u and v are
connected if, and only if both u and v belong to the same set Vi, then the
subgraphs G(V1), . . . , G(Vr) are called the connected components of G. A bi-
partite graph is one whose vertex set can be partitioned into two subsets X
and Y , in such a way that each edge has a vertex in X and one vertex in Y .
Particularly, a bipartite graph is complete if every vertex in X is associated
with every vertex in Y .

A Topological Index is a numerical value that allows obtain information
of a determined discrete structure associated with the invariants of a graph.
The topological indices based on the degrees of vertices and edges have been
used for more than 40 years. Among them, it is known that several are useful
in the field of chemistry research. Probably, the best-known descriptor is the
Randic connectivity index (R) [10]. There are several research works on this
molecular descriptor (see, for example, [4], [8], [11], [12] and their references).
For many years, scientists tried to enhance the predictive power of the Randic
Index. This led to the introduction of a large number of topological descriptors
correlated with the original Randic Index.

Two of the best-known successors are the first and second Zagreb indices,
denoted by M1 y M2, and defined as

M1(G) =
∑

uv∈E(G)

(du + dv) =
∑

u∈V (G)

d2u, M2(G) =
∑

uv∈E(G)

dudv,

where uv denotes the edge of the graph G, connecting the vertices u and v, and
du is the degree of vertex u. These indices have attracted increasing interest
[3]. In the same direction, in [1] the indices are generalized for every real
number, in the following way:

Mα
1 (G) =

∑
u∈V (G)

dαu , Mα
2 (G) =

∑
uv∈E(G)

(dudv)
α,

respectively. The correlation capabilities of 20 topological indices were tested
for the case of standard heat formation and normal boiling points of the octane
isomers. It is remarkable that the second generalized Zagreb index Mα

2 with
the exponent α = −1 (and at a lesser extent with the exponent α = −2)

has a significantly better performance than the Randic’ index (R = M
−1/2
2 ).

The second Zagreb variable index is used in the modeling of boiling points of
benzenoid hydrocarbon structure. Many properties and relationships of these
indices are discussed in several documents ([16]).

The associated graph with the BMWP Index Methodology described in [5],
is defined by the correlated between the presence -or absence- of macroinver-
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tebrate families and their value of tolerance to organic pollution. The rela-
tionships shown in Fig. 1 represent the macroinvertebrate families and their
respective tolerance values, analyzed with the BMWP-CR methodology.

Figure 1: The graph describe the BMWP-CR index methodology.

Let GBMWP (V,E) be a bipartite graph with vertex set V = {βi, Aj} where
βi = 1, 2, . . . , N1 are tolerance values to pollution, and Aj with j = 1, 2, . . . , N2

are the macroinvertebrate families and edge set E = {βi ∼ Aj} represent the
correlation between macroinvertebrate families and their tolerance values to
pollution. Vertex degree βi, denoted by δ(βi), represent the macroinvertebrate
families current with tolerance value to pollution βi.

Let GBMWP be a graph, then the BMWP (GBMWP ) index is defined as
follows

BMWP (GBMWP ) =

N1∑
i=1

βi ∗ δ(βi).

The next result gives bounds for the BMWP (GBMWP ) index, where λ =
N1(N1 + 1)/2, ε = max{δ(βi)} and γ = min{δ(βi)}.

Theorem 2.1. Let GBMWP be a graph, then

λ ∗ γ ≤ BMWP (GBMWP ) ≤ λ ∗ ε.
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Proof. Given that δ(βi) ≤ ε, we have that

N1∑
i=1

βi ∗ δ(βi) ≤
N1∑
i=1

βi ∗ ε = ε ∗
N1∑
i=1

βi = ε ∗ λ.

Therefore, BMWP (GBMWP ) ≤ λ ∗ ε. By similar argument we obtain the
another inequality.

If the BMWP ≥ 120 score means unpolluted waters or non-altered in
a sensitive way, then, how many families of benthic macroinvertebrates are
needed to reach that value? By Theorem 2.1 shows that 120 ≤ λ ∗ γ, so
then for 9 tolerance values (N1 = 9) we obtain that 2.6 ≤ γ, which means
that at least 3 families associated with each tolerance value to pollution are
needed to reach that value. The next proposition allows the quantification of
macroinvertebrate families present.

Proposition 2.2. If f(GBMWP ) is the number of macroinvertebrate fami-
lies, then

BMWP (GBMWP )

18
≤ f(GBMWP ) ≤ BMWP (GBMWP )

2
.

3 Index JP Methodology

Let Gwp(V,E) be a bipartite graph with weight αji, vertex set V = {βi, Aj}
where βi = 1, 2, . . . , N1 are tolerance values to pollution, and Aj with j =
1, 2, . . . , N2 are the macroinvertebrate families grouped at order level, and
N1 ≤ N2. The number of individuals in each macroinvertebrate family (weight
of the edge) is determined by αji, for example, α37 represents the number of
individuals in the A3 macroinvertebrate family with a tolerance value of 7.

The index for water quality assessment is defined as

JP (Gwp) :=

N1∑
i=1

βi
∑
βi∼Aj

log2(αji)
1/δ(βi).

By definition we have that, if the graph Gwp has r connected components,
G1, . . . , Gr, then

JP (Gwp) = JP (G1) + JP (G2) + · · ·+ JP (Gr).

From the previous result and from the experimental analysis, we have that
when the resulting graph has less connected components, it implies that there
is more diversity of families, i.e., waters are not contaminated or sensitively
altered, and vice versa. Therefore, we have the next result.
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Figure 2: The graph describe a JP score methodology

Proposition 3.1. If Gwp has r connected components, then there is an in-
verse correlation between the water quality and the number of connected com-
ponents.

Theorem 3.2. JP (Gwp) = BMWP (GBMWP ) if, and only if, αji = 2δ(βi).

Proof. Observe that

JP (Gwp) = BMWP (GBMWP ) ⇔
N1∑
i=1

βi
∑

βi∼Aj
log2(αji)

1/δ(βi) =
N1∑
i=1

βi ∗ δ(βi) ⇔∑
βi∼Aj

log2(αji)
1/δ(βi) = δ(βi) ⇔

log2(αji)
1/δ(βi) = 1 ⇔

log2(αji) = δ(βi) ⇔
2δ(βi) = αji.

The next theorem gives bounds to determine intervals that allow the clas-
sification of water quality.

Theorem 3.3. Let Gwp be a graph, then λ ∗ k̃1 ≤ JP (Gwp) ≤ λ ∗ k̃n, where
k̃n = log2(kn) and k̃1 = log2(k1).

Proof. Since that αji is a natural number , then there are k1, kn ∈ N such that
0 < k1 ≤ αji ≤ kn, moreover log2(x) it is a strictly increasing function for all
x > 0, in particular for k1 ≤ αji ≤ kn, we have that log2(k1) ≤ log2(αji) ≤
log2(kn) for all αji. Since that k̃n = log2(kn), then
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N1∑
i=1

βi
∑

βi∼Aj

1
δ(βi)

log2(αji) ≤
N1∑
i=1

βi
∑

βi∼Aj

1
δ(βi)
∗ k̃n

=
N1∑
i=1

βi ∗ δ(βi)δ(βi)
∗ k̃n

=
N1∑
i=1

βi ∗ k̃n

= λ ∗ k̃n.

By similar argument we obtain the another inequality, taking k̃1 = log2(k1).

Note that the bounds found are based on tolerance values to pollution and
abundance of each family.

Corollary 3.4. Let Gwp be a graph, then

0 ≤ JP (Gwp) ≤ k̃n ∗ λ.

Corollary 3.5. Let Gwp be a graph and k 6= 1 constant, then

i) JP (Gwp) = 0 if, and only if, αji = 1.

ii) JP (Gwp) = k̃n ∗ λ if, and only if, αji = k.

As consequence of the previous results we have to a qualitative approxima-
tion for water quality assessment.

Proposition 3.6. Define σ = 2JP (Gwp)

N1(N1+1)∗k̃n
, then

i) if σ → 0 it implies heavily polluted waters, and

ii) if σ → 1 it implies very clean waters.

Acknowledgements. We would like to thank the Universidad Autónoma
de Guerrero for the economic support that made this research possible, as well
as CONACYT for the scholarship awarded to the first author to study his
doctoral program.

References

[1] G. Britto Antony Xavier, E. Suresh and I. Gutman, Counting relations
for general Zagreb indices, Kragujevac J. Math., 38 (2014), 95–103.
https://doi.org/10.5937/kgjmath1401095x



Approximation to the study of water quality 429

[2] M. RT. Dale, Applying Graph Theory in Ecological Research, Cambridge
University Press, 2017. https://doi.org/10.1017/9781316105450

[3] B. Furtula, I. Gutman, S. Ediz, On difference of Zagreb indices, Discr.
Appl. Math., 178 (2014), 83–88.
https://doi.org/10.1016/j.dam.2014.06.011

[4] I. Gutman, B. Furtula (Eds.),Recent Results in the Theory of Randić In-
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