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Abstract

The concept of geometric–arithmetic index was introduced in the chemical graph
theory recently, but it has shown to be useful. One of the main aims of algebraic
graph theory is to determine how, or whether, properties of graphs are reflected in
the algebraic properties of some matrices. The aim of this paper is to study the
geometric–arithmetic index GA1 from an algebraic viewpoint. Since this index is
related to the degree of the vertices of the graph, our main tool will be an appropriate
matrix that is a modification of the classical adjacency matrix involving the degrees
of the vertices.

1 Introduction

The study of topological indices is a subject of increasing interest, both in pure and

applied mathematics. Topological indices are interesting since they capture some of the

properties of a molecule (or a graph) in a single number. Hundreds of topological indices

have been introduced and studied, starting with the seminal work by Wiener [23] in which

he used the sum of all shortest-path distances of a (molecular) graph for modeling physical

properties of alkanes.
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Topological indices based on end-vertex degrees of edges have been used over 40 years.

Probably, the best know such descriptor is the Randić connectivity index, denoted by

R (see [18, 19]). There are more than thousand papers and a couple of books dealing

with this index (see, e.g., [11, 14, 15] and the references therein). Trying to improve

the predictive power of the Randić index, scientists have introduced a large number of

topological indices. The first geometric–arithmetic index GA1, defined in [22] as

GA1(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

where uv denotes the edge of the graph G connecting the vertices u and v, and du is

the degree of the vertex u, is one of the successors of the Randić index. Although GA1

was introduced just five years ago, there are many papers dealing with this index (see,

e.g., [4–7, 10, 17, 20–22, 25] and the references cited therein). There are other geometric–

arithmetic indices, like Zp,q (Z0,1 = GA1), but the results in [5, p.598] show empirically

that the GA1 index gathers the same information on observed molecules as other Zp,q

indices.

The reason for introducing a new index is to gain prediction of some property of

molecules somewhat better than obtained by already presented indices. Therefore, a test

study of predictive power of a new index must be done. The GA1 index gives better cor-

relation coefficients than Randić index for many physico–chemical properties of octanes,

but the differences between them are not significant. However, the predicting ability of

the GA1 index compared with Randić index is reasonably better (see [5, Table 1]). Fur-

thermore, the improvement in prediction with GA1 index comparing to Randić index in

the case of standard enthalpy of vaporization is more than 9%. Hence, one can think that

GA1 index should be considered in the QSPR/QSAR researches.

Spectral graph theory is a useful subject that studies the relation between graph

properties and the spectrum of some important matrices in graph theory, as the adjacency

matrix, the Laplacian matrix, and the incidence matrix, see e.g. [1, 2, 9]. Eigenvalues of

graphs appear in a natural way in mathematics, physics, chemistry and computer science.

One of the main aims of algebraic graph theory is to determine how, or whether, properties

of graphs are reflected in the algebraic properties of such matrices [9]. The aim of this

paper is to study the geometric–arithmetic index GA1 from an algebraic viewpoint. Since

this index is related to the degree of the vertices of the graph, our main tool will be an

appropriate matrix, denoted by A, that is a modification of the classical adjacency matrix
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involving the degrees of the vertices. Besides, we will use the known sum–connectivity

matrix in order to obtain more algebraic properties of GA1 in Section 2.

We begin by stating some notation. Throughout this paper, G = (V,E) = (V (G), E(G))

denotes a (non-oriented) finite simple (without multiple edges and loops) connected graph

of order n = |V (G)| and size m = |E(G)| with E(G) 6= ∅. We denote two adjacent ver-

tices u and v by u ∼ v. For a vertex u ∈ V we denote N(v) = {u ∈ V : u ∼ v}. The

degree of a vertex v ∈ V will be denoted by dv = |N(v)|. We denote by δ and ∆ the

minimum and maximum degree of the graph, respectively. We use the classical notation

uv for the edge of a graph joining the vertices u and v. Note that the connectivity of

G is not an important restriction, since if G has connected components G1, . . . , Gr, then

GA1(G) = GA1(G1) + · · ·+GA1(Gr); furthermore, every molecular graph is connected.

2 The Sum–Connectivity Matrix and GA1

We will need the following classical result, which provides a converse of Cauchy–Schwarz

inequality (see [13, p.62]).

Lemma 2.1. If 0 < n1 ≤ aj ≤ N1 and 0 < n2 ≤ bj ≤ N2 for 1 ≤ j ≤ k, then

( k∑
j=1

a2
j

)1/2( k∑
j=1

b2
j

)1/2

≤ 1

2

(√
N1N2

n1n2

+

√
n1n2

N1N2

)( k∑
j=1

ajbj

)
.

We also need the following result (see [20]).

Lemma 2.2. Let g be the function g(x, y) =
2
√
xy

x+y
with 0 < a ≤ x, y ≤ b. Then

2
√
ab

a+ b
≤ g(x, y) ≤ 1.

The equality in the lower bound is attained if and only if either x = a and y = b, or x = b

and y = a, and the equality in the upper bound is attained if and only if x = y.

The Sum-Connectivity Matrix S = S(G) of the graph G is defined as the matrix with

entries (see [29]):

Suv :=

{
1√

du+dv
, if uv ∈ E(G),

0, otherwise.

We will denote by tr(A) the trace of the matrix A.
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Theorem 2.3. We have for any graph G

δ tr(S2) ≤ GA1(G) ≤ ∆ tr(S2),

and the equality in each inequality holds if and only if G is regular.

Proof. Since the i-th entry βii in the diagonal of S2 is

βii =
∑

1≤j≤n
vivj∈E(G)

1

dvi + dvj
,

we deduce

tr(S2) =
n∑
i=1

βii =
n∑
i=1

∑
1≤j≤n

vivj∈E(G)

1

dvi + dvj
=

∑
uv∈E(G)

2

du + dv
.

Then we have

GA1(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

≥ δ
∑

uv∈E(G)

2

du + dv
= δ tr(S2),

GA1(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

≤ ∆
∑

uv∈E(G)

2

du + dv
= ∆ tr(S2).

If GA1(G) = δ tr(S2) (respectively, GA1(G) = ∆ tr(S2)), then
√
dudv = δ for every uv ∈

E(G) and we conclude du = δ (respectively, du = ∆) for every u ∈ V (G). Reciprocally, if

G is regular, then the lower and upper bound are the same, and they are equal to GA1(G).

We deal now with an additional topological descriptor, called harmonic index, defined

as

H(G) =
∑

uv∈E(G)

2

du + dv
.

This index has attracted a great interest in the lasts years (see, e.g., [8, 24,27,28]).

Notice that

tr(S2) =
∑

uv∈E(G)

2

du + dv
= H(G).

Thus, we have the following corollary (see [20]).

Corollary 2.4. We have for any graph G

δH(G) ≤ GA1(G) ≤ ∆H(G),

and the equality in each inequality holds if and only if G is regular.
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We will denote by M1(G) and M2(G) the first and the second Zagreb indices of the

graph G, respectively, defined in [12] as

M1(G) =
∑

u∈V (G)

d2
u, M2(G) =

∑
uv∈E(G)

dudv.

These indices have attracted growing interest, see e.g., [3, 4, 12, 16] (in particular, they

are included in a number of programs used for the routine computation of topological

indices).

Theorem 2.5. We have for any graph G

2δ
√

∆M2(G) tr(S2)

∆2 + δ2
≤ GA1(G) ≤

√
M2(G) tr(S2)

δ
,

and the equality in each inequality holds if and only if G is regular.

Proof. Cauchy-Schwarz inequality gives

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≤
( ∑
uv∈E(G)

dudv

)1/2( ∑
uv∈E(G)

4

(du + dv)2

)1/2

≤
(
M2(G)

)1/2
(1

δ

∑
uv∈E(G)

2

du + dv

)1/2

=

√
M2(G) tr(S2)

δ
.

If the equality holds, then 1
2
(du + dv) = δ for every uv ∈ E(G) and we conclude du = δ

for every u ∈ V (G).

Since

δ ≤
√
dudv ≤ ∆,

1

∆
≤ 1

1
2
(du + dv)

≤ 1

δ
,

Lemma 2.1 gives

GA1(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
≥

(∑
uv∈E(G) dudv

)1/2(∑
uv∈E(G)

4
(du+dv)2

)1/2

1
2

(
∆
δ

+ δ
∆

)
≥

2∆δ
(
M2(G)

)1/2
(

1
∆

∑
uv∈E(G)

2
du+dv

)1/2

∆2 + δ2
=

2δ
√

∆M2(G) tr(S2)

∆2 + δ2
.

If the equality holds, then 1
2
(du + dv) = ∆ for every uv ∈ E(G) and we conclude du = ∆

for every u ∈ V (G).

Reciprocally, if G is regular, then both bounds have the same value, and they are

equal to GA1(G).
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Corollary 2.6. We have for any graph G

2δ
√

∆M2(G)H(G)

∆2 + δ2
≤ GA1(G) ≤

√
M2(G)H(G)

δ
,

and the equality in each inequality holds if and only if G is regular.

3 The Geometric–Arithmetic Matrix and GA1

Given a graph G, let us define the geometric–arithmetic Matrix A with entries

auv :=

{
2
√
dudv

du+dv
, if uv ∈ E(G),

0, otherwise.

We start with the following elementary result which allows to obtain new bounds for

GA1(G).

Lemma 3.1. We have for any graph

tr(A) = 0,

tr(A2) = 2
∑

uv∈E(G)

4 dudv
(du + dv)2

,

tr(A3) = 2
∑

uv∈E(G)

4 dudv
du + dv

∑
w∈V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

.

Proof. Since every element in the main diagonal of A is 0, we obtain tr(A) = 0.

Since the i-th entry αii in the diagonal of A2 is

αii =
∑

1≤j≤n
vivj∈E(G)

4 dvidvj
(dvi + dvj)

2
,

we have

tr(A2) =
n∑
i=1

αii =
n∑
i=1

∑
1≤j≤n

vivj∈E(G)

4 dvidvj
(dvi + dvj)

2
= 2

∑
uv∈E(G)

4 dudv
(du + dv)2

.

One can check in a similar way the last equality.

Proposition 3.2. We have for any graph G

δ2tr(A2)

2
≤M2(G) ≤ ∆2tr(A2)

2
.

Furthermore, the equality in each inequality is attained if and only if G is a regular graph.
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Proof. We deduce the inequalities

1

∆2
M2(G) =

1

∆2

∑
uv∈E(G)

dudv ≤
∑

uv∈E(G)

4dudv
(du + dv)2

≤ 1

δ2

∑
uv∈E(G)

dudv =
1

δ2
M2(G).

If G is a regular graph, then both bounds have the same value, and they are equal to

tr(A2)

2
= m.

If the first inequality is attained, then 1
2
(du+dv) = δ for every uv ∈ E(G) and thus du = δ

for every u ∈ V (G). If the second inequality is attained, then 1
2
(du + dv) = ∆ for every

uv ∈ E(G) and du = ∆ for every u ∈ V (G).

Recall that a (∆, δ)-biregular graph is a bipartite graph for which any vertex in one side

of the given bipartition has degree ∆ and any vertex in the other side of the bipartition

has degree δ.

Theorem 3.3. We have for any graph G

1

2
tr(A2) ≤ GA1(G) ≤ (∆ + δ) tr(A2)

4
√

∆δ
.

The equality in the lower bound is attained if and only if G is regular; the equality in the

upper bound is attained if and only if G is either regular or (∆, δ)-biregular.

Proof. By Lemma 2.2, taking a = δ and b = ∆, we have

2
√

∆δ

∆ + δ
≤ 2
√
dudv

du + dv
≤ 1.

Thus Lemma 3.1 gives

tr(A2) = 2
∑

uv∈E(G)

2
√
dudv

du + dv

2
√
dudv

du + dv
≥ 2

2
√

∆δ

∆ + δ

∑
uv∈E(G)

2
√
dudv

du + dv
=

4
√

∆δ

∆ + δ
GA1(G),

and

tr(A2) = 2
∑

uv∈E(G)

2
√
dudv

du + dv

2
√
dudv

du + dv
≤ 2

∑
uv∈E(G)

2
√
dudv

du + dv
= 2GA1(G).

By Lemma 2.2, the equality in the upper bound is attained if and only if either du = ∆

and dv = δ, or viceversa, for each uv ∈ E(G). Since G is connected, this happens if and

only if G is a regular graph if ∆ = δ or a (∆, δ)-biregular graph otherwise.

The equality in the lower bound holds, by Lemma 2.2, if and only if du = dv for every

edge uv ∈ E(G). Since G is a connected graph, this happens if and only if G is regular.

-127-



Denote by A the adjacency matrix of a graph. Since the adjacency matrix A and A

are real symmetric matrices, their eigenvalues are real numbers. Denote by λ1 ≥ · · · ≥ λn

and µ1 ≥ · · · ≥ µn the ordered eigenvalues of A and A, respectively.

Theorem 3.4. For any graph G the inequalities

µ2
1n

2(n− 1)
≤ GA1(G) ≤ 1

2
µ1n

hold. Furthermore, the equality in the lower bound is attained for every complete graph

and the equality in the upper bound is attained for every regular graph.

Proof. Denote by j the vector j = (1, 1, . . . , 1) ∈ Rn. Since A is non–negative and

irreducible (we just consider connected graphs) Perron–Frobenius Theorem gives µ1 ≥ |µj|

for every j and then µ1 > 0. Hence, using Rayleigh quotient, we obtain

µ1 = max
x 6=0

〈Ax,x〉
‖x‖2

≥ 〈Aj, j〉
‖j‖2

=
2GA1(G)

n
.

Since
∑n

i=1 µi = tr(A) = 0, we have µ1 = −
∑n

i=2 µi and Cauchy-Schwarz inequality

gives

µ2
1 =

( n∑
i=2

µi

)2

≤
( n∑
i=2

µ2
i

)
(n− 1),

n∑
i=1

µ2
i = µ2

1 +
n∑
i=2

µ2
i ≥ µ2

1 +
µ2

1

n− 1
=

nµ2
1

n− 1
.

We have by Theorem 3.3

nµ2
1

n− 1
≤

n∑
i=1

µ2
i = tr(A2) ≤ 2GA1(G).

Assume now that G is a ∆-regular graph. Then A is equal to the adjacency matrix.

It is well known that the greatest eigenvalue λ1 of the adjacency matrix of a ∆-regular

graph is equal to ∆. Hence, µ1 = ∆ and GA1(G) = m = 1
2

∆n = 1
2
λ1n = 1

2
µ1n.

Assume now that G is a complete graph Kn, thus G is a (n − 1)-regular graph and

λ1 = µ1 = n− 1. Hence,

µ2
1n

2(n− 1)
=
n(n− 1)

2
= m = GA1(G).

The argument in the proof of Theorem 3.4 gives, in fact, the following result.

Corollary 3.5. We have for any graph G

µ1 ≤
√

(n− 1)tr(A2)

n
.
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We also have the following consequence.

Corollary 3.6. We have for any graph G the inequality µ1 ≤ n− 1.

We will need the following lemma (see [20]).

Lemma 3.7. We have for any graph G∑
uv∈E(G)

1

du + dv
≥ m2

M1(G)
.

Proposition 3.8. We have for any graph G

8m2
√

∆δ3

(∆ + δ)tr(A2)
≤M1(G),

and the equality is attained if and only if G is a regular graph.

Proof. By Lemma 3.1,

tr(A2) =
∑

uv∈E(G)

8dudv
(du + dv)2

.

By Lemma 2.2, taking a = δ and b = ∆, we have

2
√
dudv

du + dv
≥ 2
√

∆δ

∆ + δ
,

and we obtain by Lemma 3.7

tr(A2) ≥ 8
√

∆δ

∆ + δ

∑
uv∈E(G)

√
dudv

du + dv
≥ 8
√

∆δ3

∆ + δ

∑
uv∈E(G)

1

du + dv
≥ 8m2

√
∆δ3

(∆ + δ)M1(G)
.

If the equality is attained, then
√
dudv = δ for every uv ∈ E(G) and thus du = δ for every

u ∈ V (G). If G is regular, then M1(G) = n∆2 = 2m∆, tr(A2) = 2m and we have the

equality.

Denote by σ2 the variance of the sequence of the terms
{

2
√
dudv

du+dv

}
appearing in the

definition of GA1(G).

Theorem 3.9. We have for any graph G

GA1(G) =

√
1

2
mtr(A2)−m2σ2 .
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Proof. Lemma 3.1 gives
1

2
tr(A2) =

∑
uv∈E(G)

4dudv
(du + dv)2

.

By the definition of σ2, we have

σ2 =
1

m

∑
uv∈E(G)

( 2
√
dudv

du + dv

)2

−
( 1

m

∑
uv∈E(G)

2
√
dudv

du + dv

)2

=
1

2m
tr(A2)− 1

m2
GA1(G)2,

and this equality implies the result.

Theorem 3.10. We have for any graph G√
1

2
tr(A2) +

4∆δ

(∆ + δ)2
m(m− 1) ≤ GA1(G) ≤

√
1

2
tr(A2) +m(m− 1) .

The equality in the second inequality is attained if and only if G is regular. The equality

in the first inequality is attained if G is regular.

Proof. Lemma 3.1 gives

GA1(G)2 =
( ∑
uv∈E(G)

2
√
dudv

du + dv

)2

=
∑

uv∈E(G)

4dudv
(du + dv)2

+
∑
uv 6=xy

2
√
dudv

du + dv

2
√
dxdy

dx + dy

=
1

2
tr(A2) +

∑
uv 6=xy

2
√
dudv

du + dv

2
√
dxdy

dx + dy
.

By Lemma 2.2, taking a = δ and b = ∆, we have

2
√

∆δ

∆ + δ
≤ 2
√
dudv

du + dv
≤ 1,

and we obtain

GA1(G)2 =
1

2
tr(A2) +

∑
uv 6=xy

2
√
dudv

du + dv

2
√
dxdy

dx + dy
≤ 1

2
tr(A2) +

∑
uv 6=xy

1

=
1

2
tr(A2) +m(m− 1),

GA1(G)2 ≥ 1

2
tr(A2) +

∑
uv 6=xy

4∆δ

(∆ + δ)2
=

1

2
tr(A2) +

4∆δ

(∆ + δ)2
m(m− 1).

If G is a regular graph, then tr(A2) = 2m. Thus,

1

2
tr(A2) +

4∆δ

(∆ + δ)2
m(m−1) =

1

2
tr(A2) +m(m−1) = m+m(m−1) = m2 = GA1(G)2.
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Assume now that the equality in the second inequality is attained. If G has just an

edge, then G is 1-regular. Assume now that G has at least two edges. Hence,

2
√
dudv

du + dv

2
√
dxdy

dx + dy
= 1

for every uv 6= xy. SinceG has at least two edges, 1
2
(du+dv) =

√
dudv for every uv ∈ E(G),

thus du = dv for every uv ∈ E(G) and G is regular, since it is connected.

The well–known inequality

GA1(G) ≤
√
mM2(G)

δ

was proved in [6] (see also [5, p.611]). Using a similar argument to the one in the proof of

Theorem 3.10, we obtain a lower bound of GA1 involving the second Zagreb index M2(G).

Proposition 3.11. We have for any graph G

GA1(G) ≥
√
n2M2(G) + 4∆2(n− 1)m(m− 1)

n∆
.

Proof. By Lemma 2.2, taking a = 1 and b = n− 1, we have

2
√
dudv

du + dv
≥ 2
√
n− 1

n
.

Lemma 3.1 gives

GA1(G)2 =
( ∑
uv∈E(G)

2
√
dudv

du + dv

)2

=
∑

uv∈E(G)

4dudv
(du + dv)2

+
∑
uv 6=xy

2
√
dudv

du + dv

2
√
dxdy

dx + dy

≥ 1

∆2

∑
uv∈E(G)

dudv +
∑
uv 6=xy

4(n− 1)

n2

=
M2(G)

∆2
+

4(n− 1)

n2
m(m− 1)

=
n2M2(G) + 4∆2(n− 1)m(m− 1)

n2∆2
.

Theorem 3.12. We have for any graph G

1

2

n∑
j=1

λjµn−j+1 ≤ GA1(G) ≤ 1

2

n∑
j=1

λjµj.

Furthermore, the equality in the second inequality is attained for every regular graph.
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Proof. We have 2GA1(G) = tr(AA), by using a similar argument to the one in the proof

of Lemma 3.1, and we obtain both inequalities by using the results in [26] about the trace

of a product of matrices.

Assume now that G is a regular graph. Then A = A and we have

1

2

n∑
j=1

λjµj =
1

2

n∑
j=1

µ2
j =

1

2
tr(A2) = m = GA1(G),

and the equality in the second inequality is attained.

Theorem 3.13. We have for any graph G

GA1(G) ≤ n tr(A2)

4
√
n− 1

.

The equality in the bound is attained if and only if G is a star graph.

Proof. By Lemma 2.2, taking a = 1 and b = n− 1, we have

2
√
n− 1

n
≤ 2
√
dudv

du + dv
≤ 1,

and Lemma 3.1 gives

tr(A2) = 2
∑

uv∈E(G)

2
√
dudv

du + dv

2
√
dudv

du + dv
≥ 2

2
√
n− 1

n

∑
uv∈E(G)

2
√
dudv

du + dv
=

4
√
n− 1

n
GA1(G),

By Lemma 2.2, the equality in the upper bound holds for G if and only if every edge

joins a vertex of degree 1 with a vertex of degree n− 1, and this holds if and only if G is

a star graph.

Theorem 3.14. We have for any graph G

δ2 tr(A3)

∆2
(
M1(G)− 2m

) ≤ GA1(G) ≤ ∆2 tr(A3)

δ2
(
M1(G)− 2m

) ,
and the equality is attained in each inequality if and only if G is regular.

Proof. Denote by CP3 the cardinality of the set of paths of length 2 in G. For any fixed

w ∈ E(G), the set of paths of length 2 which have w as central vertex has cardinality

1
2
dw(dw − 1). Hence,

CP3 =
1

2

∑
w∈V (G)

dw(dw − 1) =
1

2
M1(G)−m,

∑
w∈V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

≤
∑

w∈V (G)
w∼u,w∼v

2∆

4δ2
=

∆

4δ2
2CP3 =

∆

4δ2

(
M1(G)− 2m

)
, (3.1)
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∑
w∈V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

≥
∑

w∈V (G)
w∼u,w∼v

2δ

4∆2
=

δ

4∆2
2CP3 =

δ

4∆2

(
M1(G)− 2m

)
. (3.2)

Thus, Lemma 3.1 and (3.1) give

tr(A3) = 2
∑

uv∈E(G)

4 dudv
du + dv

∑
w∈V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

≤ 2
∑

uv∈E(G)

2
√
dudv

du + dv
2
√
dudv

∆

4δ2

(
M1(G)− 2m

)
≤

∑
uv∈E(G)

2
√
dudv

du + dv
∆

∆

δ2

(
M1(G)− 2m

)
=

∆2

δ2

(
M1(G)− 2m

)
GA1(G).

Using (3.2) instead of (3.1), we obtain

tr(A3) = 2
∑

uv∈E(G)

4 dudv
du + dv

∑
w∈V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

≥ 2
∑

uv∈E(G)

2
√
dudv

du + dv
2
√
dudv

δ

4∆2

(
M1(G)− 2m

)
≥

∑
uv∈E(G)

2
√
dudv

du + dv
δ
δ

∆2

(
M1(G)− 2m

)
=

δ2

∆2

(
M1(G)− 2m

)
GA1(G).

If the graph is regular, then the lower and upper bound are the same, and they are

equal to GA1(G).

If we have the equality in the lower bound, then
√
dudv = ∆ for every uv ∈ E(G);

hence, du = ∆ for every u ∈ V (G) and the graph is regular.

If we have the equality in the upper bound, then
√
dudv = δ for every uv ∈ E(G);

hence, du = δ for every u ∈ V (G) and G is regular.
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[7] K. C. Das, N. Trinajstić, Comparison between first geometric–arithmetic index and

atom-bond connectivity index, Chem. Phys. Lett. 497 (2010) 149–151.

[8] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On the har-

monic index and the chromatic number of a graph, Discr. Appl. Math. 161 (2013)

2740–2744.

[9] C. Godsil, G. Royle, Algebraic Graph Theory , Springer, New York, 2001.

[10] I. Gutman, A property of the simple topological index, MATCH Commun. Math.

Comput. Chem. 25 (1990) 131–140.

[11] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index , Univ.
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