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Abstract: We investigate the pricing of options using a modified Black-Scholes equation

with a time-fractional derivative and additive white noise on the half-line. We construct the

Green function for the initial-boundary value problem adapting the main ideas of the Fokas

method and we prove existence and uniqueness of solutions.
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1. Introduction

Black and Scholes [2] proposed a theoretical model to determine the valuation of
an European or American option of type call or put, on a non-dividend paying
stock. The Black-Scholes equation it is given by

∂V

∂τ
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (S, τ) ∈ R

+ × [0, T ], (1)

where V (S, τ) is the value of the option, S is the price of the underlying asset,
τ is the time, T is the expiration date, σ is the volatility of the underlying
asset and r is the risk-free interest rate. A great number of works has been
devoted to study this model through different points of view, (see for instance
[1], [6], [13]). On the other hand, some authors have generalized this model,
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replacing the geometric Brownian motion by fractional Brownian motion, see
[8], [9], [14]. Other generalization is obtained by changing the partial derivative
in the time variable by a fractional derivative, see [3], [7], [11]. In comparison
with standard derivatives of integer order, the fractional order derivatives are
characterized by their memory, i.e., the rate of change of a function near a point
is affected by the history in the time domain of definition rather than just near
the point itself.

Lets notice that the equation (1) is equivalent, via the change of variables:
V (S, τ) = Kq(x, t), S = Kex, τ = T−t, with K > 0 a constant, to the equation

qt = aqxx + (b− a)qx − bq,

where a = 1
2σ

2, b = r. In this work, we consider an initial-boundary value
problem for a stochastic evolution equation of Black-Scholes type with time-
fractional derivative and white noise on the half-line,





Dα
t q = aqxx + (b− a)qx − bq +N q + Ḃ, x > 0, t ∈ [0, T ],

q(x, 0) = q0(x),
q(0, t) = g0(t),

(2)

where Dα
t is the Caputo fractional derivative with 0 < α < 1; N is a lipschitzian

operator and Ḃ(x, t) is the white noise on R
+ × [0, T ].

This paper is organized as follows: First, we solve the linear problem asso-
ciated with (2), adapting the main ideas of the Fokas method [4] for fractional
differential equations, we construct the Green’s function. Then, by Duhamel’s
principle we propose an integral representation for the solution of (2) and by
virtue of Gronwall’s lemma we are able to prove existence and uniqueness.

2. Preliminaries

In this paper, the Ḃ(x, t) is the white noise on R
+ × [0, T ] defined on complete

probability space (Ω,F ,Ft, P ), where P is a probability measure, F is a σ-
algebra and {Ft}t≥0 is a right-continuous filtration on (Ω,F) such that F0

contains all P -negligible subsets. Let B = {B(x, t)|x ∈ R
+, t ≥ 0} be a centered

Gaussian field with covariance function given by

K((x, t), (y, s)) = min{x, y}min{t, s}.

We suppose that B generates a (Ft, t ≥ 0)-martingale measure in the sense
of Walsh [12]. The initial condition q0 is supposed to be F0 × B(R+) measur-
able, where B(R+) is the Borelian σ-algebra over R

+. Now, we mention some
definitions and known results.
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Definition 1. The Caputo fractional derivative of order α ∈ (0, 1) is
defined by the integral operator

Dα
t q(x, t) =

1

Γ(1− α)

∫ t

0

qτ (x, τ)

(t− τ)α
dτ. (3)

Definition 2. The Fourier-Laplace transform is defined as follows

q̂(k, t) =

∫ ∞

0
e−ikxq(x, t)dx, Im(k) < 0.

The inverse Fourier-Laplace transform is

q(x, t) =
1

2π

∫ ∞

−∞

eikxq̂(k, t)dk.

Definition 3. The two-parametric Mittag-Leffler function is defined by
the power series

Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
, α > 0, β ∈ R. (4)

The following theorem its going to be used to determine the domain of ana-
lyticity for the functions involved in the integral representation of the solutions
to the linear problem.

Theorem 4. If α < 2, β is an arbitrary real number, µ is such that

πα/2 < µ < min{π, πα} and C is a real constant, then

|Eα,β(z)| ≤
C

1 + |z|
,

µ ≤ |arg z| ≤ π.

The proof can be found in [10].

Now, we state an important relation between the Fourier-Laplace transform
and the Mittag-Leffler function, the proof can be seen in [5].

Lemma 5. The following formula is true

1

2π

∫ ∞

−∞

eist
(is)α−β

(is)α − z
ds = tβ−1Eα,β(zt

α), |z/(is)α| < 1,

where Re(z) ≤ 0, β > 0 and 0 < α < 1.
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The following lemma is going to be used by proved existence and uniqueness of
the problem (2).

Lemma 6. Gronwall’s lemma. Suppose φ1, φ2, . . . : [0, T ] → R
+ are

measurable and non-decreasing. Suppose also that there exist a constant A
such that for all integers n ≥ 1, and t ∈ [0, T ],

φn+1(t) ≤ A

∫ t

0
φn(s) ds.

Then,

φn(t) ≤ φ1(t)
(At)n−1

(n − 1)!
.

3. Linear Problem

We consider the homogeneous linear problem associated with (2),





Dα
t q = aqxx + (b− a)qx − bq, x > 0, t ∈ [0, T ],

q(x, 0) = q0(x), x > 0,
q(0, t) = g0(t), t > 0,

(5)

where Dα
t is the Caputo fractional derivative defined by (3).

Applying the Fourier-Laplace transform with respect to x in the equation
(5), we obtain

Dα
t q̂(k, t) = p(k)q̂(k, t) − aqx(0, t) + (a− b− iak)g0(t),

where p(k) = −ak2+i(b−a)k−b. Now, we apply the Fourier-Laplace transform
to the above equation with respect to t to get

ˆ̂q(k, s) =
1

(is)α − p(k)

(
(is)α−1q̂0(k)− aq̂x(0, s) + (a− b− iak)g̃0(s)

)
.

Then, using the inverse Fourier-Laplace transform in above equation with re-
spect to t and Lemma 5, we arrive to the equation

q̂(k, t) = Eα,1(p(k)t
α)q̂0(k)− ag̃1(p(k), t) + (a− b− iak)g̃0(p(k), t), (6)

where Eα,β(z) is defined in (4), and

g̃j(p(k), t) =

∫ t

0
(t− ξ)α−1Eα,α(p(k)(t− ξ)α)∂j

xq(0, ξ)dξ, for j = 0, 1.
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Finally, applying the inverse Fourier-Laplace transform in (6) with respect to
x, we arrive to the integral representation of the solution

q(x, t) =
1

2π

∫ ∞

−∞

eikxEα,1(p(k)t
α)q̂0(k)dk

−
a

2π

∫ ∞

−∞

eikxg̃1(p(k), t)dk

+
1

2π

∫ ∞

−∞

eikx(a− b− iak)g̃0(p(k), t)dk.

(7)

Now, we consider the following region

D =

{
k = kR + ikI ∈ C :

(
kI +

b− a

2a

)2

− k2R <

(
b+ a

2a

)2
}
.

Let’s notice that if k ∈ D, then Re(p(k)) < 0. Then, in virtue of the Theorem
4,

|Eα,β(p(k)t
α)| → 0, if |k| → ∞, for k ∈ D and t > 0,

thus we assure the absolute convergence of the integrals above in the region D.
Therefore, using the Cauchy theorem we can deform the contour of integration
to ∂D in the equation (7),

q(x, t) =
1

2π

∫ ∞

−∞

eikxEα,1(p(k)t
α)q̂0(k)dk

−
a

2π

∫

∂D

eikxg̃1(p(k), t)dk

+
1

2π

∫

∂D

eikx(a− b− iak)g̃0(p(k), t)dk.

(8)

Making the change of variable k → k∗ = −k − i b−a
a

in (6) and using that p(k)
is invariant under this change, we obtain

ag̃1(p(k), t) = Eα,1(p(k)t
α)q̂0(k

∗) + (2a− 2b+ iak)g̃0(p(k), t) − q̂(k∗, t). (9)

Moreover, by the Cauchy theorem

1

2π

∫

∂D

eikxq̂(k∗, t)dk = 0.

Then, we substitute g̃1(p(k), t) from equation (9) in equation (8) and using the
above equation we arrive to
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q(x, t) =
1

2π

∫ ∞

−∞

eikxEα,1(p(k)t
α)q̂0(k)dk

−
1

2π

∫

∂D

eikxEα,1(p(k)t
α)q̂0(k

∗)dk

+
1

2π

∫

∂D

eikx(b− a− i2ak)g̃0(p(k), t)dk.

Therefore, by Fubini’s theorem, we find the following integral representation
for the solution

q(x, t) =

∫ ∞

0
GI(x, y, t)q0(y)dy +

∫ t

0
GB(x, t− ξ)g0(ξ)dξ,

where the Green function is given by

GI(x, y, t) =
1

2π

∫ ∞

−∞

eik(x−y)Eα,1(p(k)t
α)dk

−
1

2π

∫

∂D

eik(x+y)− b−a

a
yEα,1(p(k)t

α)dk,

and

GB(x, t− ξ) =
1

2π

∫

∂D

(b− a− i2ak)eikx(t− ξ)α−1Eα,α(p(k)(t − ξ)α)dk.

4. Main Problem

In this section, we prove the local existence and uniqueness of solutions for the
stochastic initial-boundary value problem





Dα
t q(x, t) = aqxx + (b− a)qx − bq +N q + Ḃ, x > 0, t ∈ [0, T ],

q(x, 0) = q0(x),
q(0, t) = g0(t),

(10)

where N is a lipschitzian operator and Ḃ(x, t) is the white noise.
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We understand the equation (10) in the Walsh [12] sense. That is, q is
called a solution if for all x ∈ R

+ and t ∈ [0, T ], q satisfies

q(x, t) =

∫ ∞

0
GI(x, y, t)q0(y)dy +

∫ t

0
GB(x, t− ξ)g0(ξ) dξ

+

∫ t

0

∫ ∞

0
G(x− y, t− ξ)N q(y, ξ) dydξ

+

∫ t

0

∫ ∞

0
G(x− y, t− ξ) dB(y, ξ),

(11)

where

G(x, t) =
1

2π

∫ ∞

−∞

eikxEα,1(p(k)t
α)dk.

The field {q(x, t)|x ∈ R
+, t ≥ 0} is said to be a global mild solution of equation

(11) if, for all 0 < T < ∞, {q(x, t)|x ∈ R
+, t ∈ [0, T ]} is a mild solution on

the interval [0, T ]. Furthermore, a global mild solution is in Lp(Ω) for some
p ≥ 1 if, for all T ≥ 0, x ∈ R

+, and for all t ∈ [0, T ], sup{E(|q(x, t)|p)|(x, t) ∈
R
+ × [0, T ]} < ∞, where E is the expectation with respect to P .

We are going to prove the existence and uniqueness theorem, where we
understand the uniqueness of the solutions in (11) in the sense that for any
mild solutions q1 and q2 on [0, T ] we have q1(x, t) = q2(x, t) in Lp(Ω), p ≥ 1,
for all x ∈ R

+ and for all t ∈ [0, T ].

Theorem 7. Suppose that for each T > 0, there exists a constant C > 0
such that for each (x, t) ∈ R

+ × [0, T ],

|N q1 −N q2| ≤ C|q1 − q2|,

and for some p ≥ 1,

sup
x∈R+

E(|q0(x)|
p) < ∞. (12)

Then, there exists a unique solution q(x, t) for the problem (10). Moreover, for

all T > 0 and p ≥ 1,

sup
(x,t)∈R+×[0,T ]

E(|q(x, t)|p) < ∞.

Proof. First, we are going to prove that {qn(x, t)}n≥0 is a Cauchy sequence
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in the complete space Lp(Ω), where

qn+1(x, t) = q0(x, t) +

∫ t

0
GB(x, t− ξ)g0(ξ) dξ

+

∫ t

0

∫ ∞

0
G(x− y, t− ξ)N qn(y, ξ) dydξ

+

∫ t

0

∫ ∞

0
G(x− y, t− ξ) dB(y, ξ).

(13)

Here, the Green function G is given by

G(x, t) =
1

2π

∫ ∞

−∞

eikxEα,1(p(k)t
α)dk

and

q0(x, t) =

∫ ∞

0
GI(x, y, t)q0(y)dy.

We have for n ≥ 2,

E(|qn+1(x, t)− qn(x, t)|p)

= E

(∣∣∣∣
∫ t

0

∫ ∞

0
G(x− y, t− ξ)[N qn(y, ξ)−N qn−1(y, ξ)] dydξ

∣∣∣∣
p)

≤ C(p)

∫ t

0

∫ ∞

0
G(x− y, t− ξ)E(|qn(y, ξ)− qn−1(y, ξ)|p)dydξ

≤ C(p)

∫ t

0
sup
y∈R+

E(|qn(y, ξ)− qn−1(y, ξ)|p)dξ

and by Minkowski inequality and (12),

sup
x∈R+

E(|q1(x, t)− q0(x, t)|p)

≤ C(p)

(
sup
x∈R+

E(|q1(x, t)|p) + sup
x∈R+

E(|q0(x, t)|p)

)
< ∞.

Then, Gronwall lemma shows that

∑

n≥0

sup
(x,t)∈R+×[0,T ]

E(|qn(x, t)− qn−1(x, t)|p) < ∞.
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Hence, {qn(x, t)}n≥0 is a Cauchy sequence in Lp(Ω). Let

q(x, t) = lim
n→∞

qn(x, t).

Then for each (x, t) ∈ R
+ × [0, T ],

sup
(x,t)∈R+×[0,T ]

E(|q(x, t)|p) < ∞.

Take n → ∞ in Lp(Ω) at both sides of (13). Then, it shows that q(x, t), satisfies
the problem (10). Finally, we prove the uniqueness of the solution. Let q1 and
q2 be the two solutions of problem (10), then

E(|q1(x, t)− q2(x, t)|
p)

= E

(∣∣∣∣
∫ t

0

∫ ∞

0
G(x− y, t− ξ)[N q1(y, ξ)−N q2(y, ξ)]dydξ

∣∣∣∣
p)

≤ C(p)

∫ t

0

∫ ∞

0
G(x− y, t− ξ)E(|q1(y, ξ) − q2(y, ξ)|

p)dydξ

≤ C(p)

∫ t

0
sup
y∈R+

E(|q1(y, ξ)− q2(y, ξ)|
p)dξ.

The Gronwall lemma yields that

E(|q1(x, t)− q2(x, t)|
p) = 0.

The Theorem 7 is proved.
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