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Abstract

In this paper, we consider an initial-boundary value problem for
a stochastic non-linear heat equation with Riemann-Liouville space-
fractional derivative and white noise on the half-line. We construct the
integral representation of the solution and prove existence and unique-
ness. Moreover, we adapt stochastic integration methods to approxi-
mate the solutions
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1 Introduction

In the past years, fractional partial differential equations have been highly
attractive to physicians, mathematicians, engineers, biologists, among others.
This equations have a great applications to a wide range of phenomena (see
[1, 3, 5, 8, 12, 13]). Space-fractional diffusion equations have been considered
in the literature by numerous authors. For example, Vásquez et al., [18] stud-
ied a generalization of the second law of thermodinamics in the framework
of the fractional calculus. Magin et al., [11] investigated the anomalous dif-
fusion stretched exponential model which is used to detect and characterize
neurodegenerative, malignant and ischemic diseases, and they incorporate a
fractional order Brownian model diffusivity. Also, in recent surveys, the diffu-
sion phenomena has been treated with stochastic partial differential equations
(see [7, 10, 16]). In this cases, the authors prove the existence, uniqueness and
regularity of mild solutions for the Cauchy problem.

In this paper, we consider an initial-boundary value problem for a stochastic
non-linear heat equation qt(x, t) = Dαq(x, t) +N q(x, t) + Ḃ(x, t), x > 0, t ∈ [0, T ],

q(x, 0) = q0(x),
I2−αq(0, t) = g2(t),

(1)

where Dα and Iα are the Riemann-Liouville fractional derivative and integral,
respectively, 1 < α < 2, N is a lipschitzian operator and Ḃ(x, t) is the white
noise. Let us notice that constructing the Green’s function is not an easy task,
due to the fact that the symbol of the differential operator is a multivalued
function. We have successfully overcome this difficulty following the main ideas
of the Fokas method [9]. Then, using the Green’s function we construct the
integral representation of the solution and prove existence and uniqueness, via
Picard iteration scheme. Also, we adapt Monte Carlo integration methods to
approximate the integral representation of the solution. In a previous work
[2], we have considered a similar problem as (1), but with the Riesz fractional
derivative of order α ∈ (2, 3), where the symbol is an univalued function,
instead of the Riemann-Liouville fractional derivative with α ∈ (1, 2).

2 Linear problem

In this section, we consider the homogeneous linear problem associated to
initial-boundary value problem (1),

qt(x, t) = Dαq(x, t), x > 0, t ∈ [0, T ],
q(x, 0) = q0(x),
I2−αq(0, t) = g2(t),

(2)
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where α ∈ (1, 2). The Riemann-Liouville fractional derivative is defined by the
integral operator

Dαf(x) = D1+[α]I1+[α]−αf(x), Iαf(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt,

where x > 0, α > 0, [α] is the integer part of α and Γ is the Gamma function
(see, [15]). Now, we define the Fourier-Laplace transformation

q̂(k, t) =

∫ ∞
0

e−ikxq(x, t)dx, Im(k) < 0,

and its inverse by

q(x, t) =
1

2π

∫ ∞
−∞

eikxq̂(k, t)dk.

Applying the Fourier-Laplace transform to equation (2), we obtain

q̂t(k, t) = (ik)αq̂(k, t)− g1(t)− ikg2(t),

where (ik)α = |k|αeiα(arg(ik)), g1(t) = Dα−1q(0, t) and g2(t) = I2−αq(0, t). Here,

we choose arg(k) the following way: for α ∈ (1, 4/3], π(2−3α)
α

< arg(k) ≤
π(2−α)

α
, and for α ∈ (4/3, 2), −3π/2 < arg(k) ≤ π/2. Multiplying the above

equation by e−(ik)
αt and integrating with respect to the time variable we get,

for Im(k) < 0,

e−(ik)
αtq̂(k, t) = q̂0(k)− g̃1 (−(ik)α, t)− ikg̃2 (−(ik)α, t) , (3)

where

g̃j(k, t) =

∫ t

0

eksgj(s)ds, j = 1, 2.

Using the inverse Fourier-Laplace transform in (3) we find

q(x, t) =
1

2π

∫ ∞
−∞

eikx+(ik)αtq̂0(k)dk − 1

2π

∫ ∞
−∞

eikx+(ik)αtg̃1 (−(ik)α, t) dk

− i

2π

∫ ∞
−∞

eikx+(ik)αtkg̃2 (−(ik)α, t) dk.

(4)

Now, we notice that if arg(k) ∈
(
−(3+α)π

2α
, −(1+α)π

2α

)
∪
(

(1−α)π
2α

, (3−α)π
2α

)
, then

Re(ik)α < 0. Let’s deform the contour of integration to ∂A in equation (4),

where the region A is defined by arg(k) ∈ (π(2−3α)
α

,−(π + ε)), for α ∈ (1, 4/3]

and ε > 0 sufficient small, and arg(k) ∈ (−3π
2
, −2π

α
) ∪ (π(2−α)

α
, π
2
), for α ∈

(4/3, 2), thus

q(x, t) =
1

2π

∫ ∞
−∞

eikx+(ik)αtq̂0(k)dk − 1

2π

∫
∂A

eikx+(ik)αtg̃1 (−(ik)α, t) dk

− i

2π

∫
∂A

eikx+(ik)αtkg̃2 (−(ik)α, t) dk.

(5)
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We make the change of variable k → ke−i
2π
α in (3) to obtain

e−(ik)
αtq̂
(
ke−i

2π
α , t
)

= q̂0

(
ke−i

2π
α

)
− g̃1 (−(ik)α, t)

− ike−i
2π
α g̃2 (−(ik)α, t) .

(6)

Note that the above equation is valid for Re(k) < cot
(
2π
α

)
Im(k). Also, by

the Cauchy theorem ∫
∂A

eikxq̂
(
ke−i

2π
α , t
)
dk = 0.

Then, we substitute g̃1 (−(ik)α, t) from equation (6) in equation (5), thus using
the above equation we arrive to

q(x, t) =
1

2π

∫ ∞
−∞

eikx+(ik)αtq̂0(k)dk − 1

2π

∫
∂A

eikx+(ik)αtq̂0

(
ke−i

2π
α

)
dk

+
e−i

π
α sin

(
π
α

)
π

∫
∂A

eikx+(ik)αtkg̃2 (−(ik)α, t) dk.

Therefore, we have obtained the integral representation

q(x, t) =

∫ ∞
0

G(I)(x− y, t)q0(y)dy +

∫ t

0

G(B)(x, t− s)g1(s)ds,

where the Green’s function is given by

G(I)(x, y, t) =
1

2π

(∫ ∞
−∞

eik(x−y)+(ik)αtdk −
∫
∂A

e
ik
(
x−ye−i

2π
α

)
+(ik)αt

dk

)
and

G(B)(x, t− s) =
e−i

π
α sin

(
π
α

)
π

∫
∂A

keikx+(ik)α(t−s)dk.

3 Existence and uniqueness of the solution

In this section, we prove the local existence and uniqueness of solutions to the
stochastic initial and boundary value problem qt(x, t) = Dαq(x, t) +N q(x, t) + Ḃ(x, t), x > 0, t ∈ [0, T ],

q(x, 0) = q0(x),
I2−αq(0, t) = g2(t),

(7)

where α ∈ (1, 2), N is a lipschitzian operator and Ḃ(x, t) is the white noise
on R+× [0, T ], defined on a complete probability space (Ω,F ,Ft, P ), where P
is a probability measure, F is a σ-algebra and {Ft}t≥0 is a right-continuous
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filtration on (Ω,F) such that F0 contains all P -negligible subsets. Let the
set B = {B(x, t)|x ∈ R+, t ≥ 0} be a centered Gaussian field with covariance
function given by

K((x, t), (y, s)) = min{x, y}min{t, s}.

We suppose that B generates a (Ft, t ≥ 0)-martingale measure in the sense of
Walsh [19]. The initial condition q0 is supposed to be F0×B(R+) measurable,
where B(R+) is the Borelian σ-algebra over R+.

We understand the equation (7) in the Walsh [19] sense. That is, q is called
a solution if for all x ∈ R+ and t ∈ [0, T ], q satisfies

q(x, t) =

∫ ∞
0

G(I)(x, y, t)q0(y) dy +

∫ t

0

G(B)(x, t− s)g1(s) ds

+

∫ t

0

∫ ∞
0

G(x− y, t− s)N q(y, s) dyds

+

∫ t

0

∫ ∞
0

G(x− y, t− s) dB(y, s)

(8)

where

G(ξ, τ) =
1

2π

∫ ∞
−∞

eikξ+(ik)ατ dk. (9)

The field {q(x, t)|x ∈ R+, t ≥ 0} is said to be a global mild solution of equation
(8) if, for all 0 < T < ∞, {q(x, t)|x ∈ R+, t ∈ [0, T ]} is a mild solution on
the interval [0, T ]. Furthermore, a global mild solution is in Lp(Ω) for some
p ≥ 1 if, for all T ≥ 0, x ∈ R+, and for all t ∈ [0, T ], sup{E(|q(x, t)|p)|(x, t) ∈
R+× [0, T ]} <∞, where E is the expectation with respect to P . We enunciate
the Gronwall’s Lemma, which is going to be used in the proof of Theorem 3.2,

Lemma 3.1. Suppose φ1, φ2, . . . : [0, T ] → R+ are measurable and non-
decreasing. Suppose also that there exist a constant A such that for all integers
n ≥ 1, and t ∈ [0, T ],

φn+1(t) ≤ A

∫ t

0

φn(s) ds.

Then,

φn(t) ≤ φ1(t)
(At)n−1

(n− 1)!
.

Now, we prove the existence and uniqueness theorem, where we understand
the uniqueness of the solution in (8) in the sence that for any mild solutions
q1 and q2 on [0, T ] we have q1(x, t) = q2(x, t) in Lp(Ω), p ≥ 1, for all x ∈ R+

and for all t ∈ [0, T ].
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Theorem 3.2. Suppose that for each T > 0, there exists a constant C > 0
such that for each (x, t) ∈ R+ × [0, T ],

|N q1 −N q2| ≤ C|q1 − q2|,

and for some p ≥ 1,
sup
x∈R+

E(|q0(x)|p) <∞. (10)

Then, there exists a unique solution q(x, t) to equation (7). Moreover, for all
T > 0 and p ≥ 1,

sup
(x,t)∈R+×[0,T ]

E(|q(x, t)|p) <∞.

Proof. Let’s define

qn+1(x, t) = q0(x, t) +

∫ t

0

G(B)(x, t− s)g1(s) ds

+

∫ t

0

∫ ∞
0

G(x− y, t− s)N qn(y, s) dyds

+

∫ t

0

∫ ∞
0

G(x− y, t− s) dB(y, s),

(11)

where

q0(x, t) =

∫ ∞
0

G(I)(x, y, t)q0(y)dy.

First, we are going to prove that {qn(x, t)}n≥0 converges in Lp(Ω). As for
n ≥ 2,

E(|qn+1(x, t)− qn(x, t)|p)

= E
(∣∣∣∣∫ t

0

∫ ∞
0

G(x− y, t− s)[N qn(y, s)−N qn−1(y, s)] dyds
∣∣∣∣p)

≤ C(p)

∫ t

0

∫ ∞
0

G(x− y, t− s)E(|qn(y, s)− qn−1(y, s)|p)dyds

≤ C(p)

∫ t

0

sup
y∈R+

E(|qn(y, s)− qn−1(y, s)|p)ds

and by (10),

sup
x∈R+

E(|q1(x, t)− q0(x, t)|p)

≤ C(p)

(
sup
x∈R+

E(|q1(x, t)|p) + sup
x∈R+

E(|q0(x, t)|p)
)
<∞.
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Then, Lemma 3.1 shows that∑
n≥0

sup
(x,t)∈R+×[0,T ]

E(|qn(x, t)− qn−1(x, t)|p) <∞.

Hence, {qn(x, t)}n≥0 is a Cauchy sequence in Lp(Ω). Let

q(x, t) = lim
n→∞

qn(x, t).

Then for each (x, t) ∈ R+ × [0, T ],

sup
(x,t)∈R+×[0,T ]

E(|q(x, t)|p) <∞.

Take n → ∞ in Lp(Ω) at both sides of (11). Then, it shows that q(x, t),
satisfies the problem (7). Finally, we have to prove the uniqueness of the
solution. Let q1 and q2 be the two solutions of problem (7), then

E(|q1(x, t)− q2(x, t)|p)

= E
(∣∣∣∣∫ t

0

∫ ∞
0

G(x− y, t− s)[N q1(y, s))−N q2(y, s))]dyds
∣∣∣∣p)

≤ C(p)

∫ t

0

∫
R
G(x− y, t− s)E(|q1(y, s)− q2(y, s)|p)dyds

≤ C(p)

∫ t

0

sup
y∈R+

E(|q1(y, s)− q2(y, s)|p)ds.

For Lemma 3.1 we obtain

E(|q1(x, t)− q2(x, t)|p) = 0.

The Theorem 3.2 is proved.

4 Numerical solution

In this section, we implement Monte Carlo methods to give an approximation
qMC(x, t) to the solution q(x, t) of the stochastic heat equation (8). By the Law
of Large Numbers, qMC(x, t) converges to q(x, t) in Lp(Ω) [17]. This methods
have proved to be efficient due to their simplicity and accuracy, even with
limited computing power. In this paper, we use such computational tools to
reach our target (see [4, 6, 17]). We apply a numerical strategy for the multiple
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integrals, implementing Importance Samplig algorithms whitin direct Monte
Carlo integration methods.

In order to implement Monte Carlo integration, note that the real part of
equation (9) is

G(x, t) =
1

2π

∫ ∞
−∞

e|k|
α cos(arg(ik)α)t cos(kx+ |k|α sin(arg(ik)α)t) dk. (12)

We briefly describe the procedure that we conducted to get the numerical
approximation of the solution in (8). For nth Picard iteration, we compute
the next steps:

1. For the first integral in (8) with the initial condition, we choose as the
initial condition q0, the Uniform probability density function (pdf), with
support on (3, 4), in order to apply Monte Carlo integration and Impor-
tant Sampling method for the Green function.

2. For the integral with the non-linear operator, we used Important Sam-
pling method for all integrals, with important functions: Uniform pdf on
[0, t] and bivariate Exponential pdf for space.

3. For the stochastic integral, we used composition method to obtain its
realizations.

For this numerical example we take g2(t) = 0, for all t ∈ [0, T ], α = 3/2 and
n = 10 Picard iterations were calculated. R statistical software [14] has been
used to carry out this procedure. For each (x, t) we calculated the estimated
Monte Carlo Standard Error MCSE of qMC(x, t). In the Figure 1 we show the
MCSE for the case x = 3, t = 1, and we observe that samples of size 15,000
are enough to reach satisfying results. In the Figure 2, we show the numerical
representation of the solution.
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