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We implement the Bayesian statistical inversion theory to obtain the solution for an inverse problem of growth data, using a
fractional population growth model. We estimate the parameters in the model and we make a comparison between this model
and an exponential one, based on an approximation of Bayes factor. A simulation study is carried out to show the performance of
the estimators and the Bayes factor. Finally, we present a real data example to illustrate the effectiveness of the method proposed
here and the pertinence of using a fractional model.

1. Introduction

In recent years, models governed by fractional differential
equations have been of great importance to describe anoma-
lous dynamic, which is inherent in a wide range of phenom-
ena (see [1–3]). This model under certain circumstances can
offer a superior fit to experimental data [4]. It is well known
that population growth can be modeled by ordinary differ-
ential equations and the exponential growth model is the
simplest and most widely used of all. However, it can fail
to describe an anomalous growth; that is, the population
may have a slower or faster growth than exponential growth
model. In order to fill this gap, we use a fractional population
growth model.

On the order hand, the measurement procedure of
growth data is under uncertainty or error data collection pro-
cess. The statistical approach toward inverse problems from
a Bayesian point of view has been very important for the
development of uncertainty quantification. Textbooks such as
[5–7] provide an extensive literature on the Bayesian statis-
tical aspects in inverse problems. Donnet et al. [8] devel-
oped a Bayesian inference for the parameters of stochastic
differential equations deduced from the standard determini-
stic growth function by adding random effects to the growth
dynamic in a population of individuals over time. Capistrán
et al. [9] also performed a Bayesian analysis of inverse

problems in ordinary differential equations. Calvetti et al. [10]
mentioned several articles on the development of Bayesian
inverse problems in a broad range of applications, such as
engineering, geophysics, life sciences, and economy. Dashti
and Stuart [11] discussed the Bayesian approach to inverse
problems in differential equations from mathematical and
computational perspective and describe Markov Chain
Monte Carlo and sequential Monte Carlo methods and mea-
sure-preserving reversible stochastic differential equations on
infinite dimensional space.

In this paper, we implement the Bayesian statistical
inversion theory to obtain a solution for an inverse problem
of growth data using a fractional population growth model,
defined in Section 2. In Section 3, we estimate the parameters
of the fractional model proposed and we make a comparison
between two different models, based on Bayes factor. In Sec-
tion 4, we make a simulation study to show the performance
of the estimators and the Bayes factor. Finally, we present a
real data example to illustrate the effectiveness of the method
proposed here and the pertinence of using a fractionalmodel.

2. The Model

In this work, the proposed mathematical model is defined by
two parts.
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(1) A dynamical system is as follows:

D
𝛼𝑋(𝑡) = 𝑎𝑋 (𝑡) + 𝑓 (𝑡) , 𝑎 > 0, 𝛼 ∈ (0, 1] ; (1)

𝑋(𝑡0) = 𝑋0, (2)

where 𝑋(𝑡) is the size of the population at the time𝑡, 𝑋0 is the initial size, 𝑎 is the rate of change, and𝑓(𝑡) is a harvesting function. HereD𝛼 is the ordinary
derivative for 𝛼 = 1 and the Caputo fractional
derivative for 𝛼 ∈ (0, 1), which is defined by

D
𝛼𝑋 (𝑡) = 1Γ (1 − 𝛼) ∫

𝑡

0

𝑋󸀠 (𝜏)(𝑡 − 𝜏)𝛼 𝑑𝜏, (3)

where Γ is the Gamma function.
(2) An observation equation is as follows:

𝑦𝑖 = ℎ (𝑋 (𝑡𝑖)) + 𝜀𝑖, 𝑖 = 1, . . . , 𝑛, (4)

where 𝑦𝑖 correspond to the 𝑖th observed value under
uncertainty from a solution of (1) at the discrete time𝑡𝑖 ∈ [0, 𝑇], 𝑖 = 1, 2, . . . , 𝑛; ℎ is the observation
function; and 𝜀𝑖 are measurement errors, which are
considered as independent and identically distributed
(i.i.d.) random variables from a normal distribution,
with mean zero and constant variance 𝜎2, denoted by𝜀𝑖 ∼ N(0, 𝜎2) (in this paper, the symbol “∼” is used
for “is distributed as”).

Now, we find an explicit solution for (1) using the Laplace
transform and its inverse, which are defined by

�̂� (𝑠) = ∫∞
0

𝑒−𝑠𝑡𝑋 (𝑡) 𝑑𝑡,
𝑋 (𝑡) = 12𝜋𝑖 ∫

𝑠0+𝑖∞

𝑠0−𝑖∞
𝑒𝑠𝑡�̂� (𝑠) 𝑑𝑠,

(5)

respectively. Applying the direct transform to (1), we obtain

�̂� (𝑠) = 1𝑠𝛼 − 𝑎 (𝑠𝛼−1𝑋0 + �̂� (𝑠)) . (6)

Then, using the following property

[𝑡𝛽−1𝐸𝛼,𝛽 (𝑎𝑡𝛼)] ̂ (𝑠) = 𝑠𝛼−𝛽𝑠𝛼 − 𝑎 , (7)

where 𝐸𝛼,𝛽 is the Mittag-Leffler function,

𝐸𝛼,𝛽 (𝑧) = ∞∑
𝑘=0

𝑧𝑘Γ (𝛼𝑘 + 𝛽) , 𝛼 > 0, 𝛽 > 0, 𝑧 ∈ C. (8)

Finally, applying the inverse Laplace transform to (6) we
arrive to𝑋 (𝑡) = 𝑋0𝐸𝛼,1 (𝑎𝑡𝛼)

+ ∫𝑡
0
(𝑡 − 𝜂)𝛼−1 𝐸𝛼,𝛼 (𝑎 (𝑡 − 𝜂)𝛼) 𝑓 (𝜂) 𝑑𝜂. (9)

Note that if 𝛼 = 1 in the above equation we get the well
known solution for (1), which is given by

𝑋 (𝑡) = 𝑋0𝑒𝑎𝑡 + ∫𝑡
0
𝑒𝑎(𝑡−𝜂)𝑓 (𝜂) 𝑑𝜂. (10)

3. Bayesian Analysis

3.1. Bayesian Estimation. In recent years, the problem of
parameter estimation in fractional models has been of great
interest, and we use a Bayesian approach to estimate the
parameters in a fractional population growth model. The
Bayesian theory has proven to be efficient to solve fractional
inverse problems (see [12, 13]). In this setting, the parameters
are regarded as random variables, and they have prior dis-
tributions that reflect the knowledge about their true values
before observing the data. From the perspective of Bayesian
statistical inversion theory, the solution to an inverse problem
is the posterior distribution of the quantity of interest given
that all information available has been incorporated in the
model [5].

Note that, for the model defined in (1) and (4), the
parameter of interest is 𝜃󸀠 = (𝑎, 𝛼, 𝜎2, 𝑋0). Here, we propose
the following prior distributions:

𝑎 ∼ G (𝑟𝑎, 𝜆𝑎) , (11)

𝛼 ∼ U (0, 1) , (12)

𝜏 ∼ G (𝑟𝜏, 𝜆𝜏) , (13)

𝑋0 ∼ lnN (𝜇0, 𝜎20) , (14)

where G(𝑟, 𝜆) denotes the Gamma distribution with shape
parameter 𝑟 and rate parameter 𝜆, U is the continuous
Uniform distribution on interval (0, 1), 𝜏 = 1/𝜎2 is called the
precision parameter, and lnN(𝜇0, 𝜎20) is a log-Normal distri-
butionwith parameters𝜇0 and𝜎20 .The parameters involved in
the prior distribution are called hyperparameters. The prior
distributions were chosen according to our knowledge about
the possible values of the parameters of interest. In models
(1) and (4), 𝑎, 𝑋0, and 𝜏 are positive and 𝛼 take values
in the interval (0, 1]. Assuming prior independence of the
parameters, we can write the joint prior distribution as

𝑝 (𝜃 | hyperparameters)
∝ 𝑝 (𝑎 | 𝑟𝑎, 𝜆𝑎) 𝑝 (𝛼) 𝑝 (𝜏 | 𝑟𝜏, 𝜆𝜏) 𝑝 (𝑋0 | 𝜇0, 𝜎20) , (15)

where 𝑝(𝑎 | 𝑟𝑎, 𝜆𝑎), 𝑝(𝛼), 𝑝(𝜏 | 𝑟𝜏, 𝜆𝜏), and 𝑝(𝑋0 | 𝜇0, 𝜎20)
are defined in (11)–(14), respectively. Let y󸀠 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)
denote i.i.d. observed data at times (𝑡1, 𝑡2, . . . , 𝑡𝑛) from the
model defined by (1) and (4), and then the likelihood function
is given by

𝐿 (y | 𝜃)
= 𝜏𝑛/2 (2𝜋)−𝑛/2 exp{−𝜏2

𝑛∑
𝑖=1

(𝑦𝑖 − ℎ (𝑋 (𝑡𝑖)))2} . (16)

Thus, by Bayes’ theorem the posterior distribution of the
parameters of interest is given by

𝑝 (𝜃 | y) = 𝐿 (y | 𝜃) 𝑝 (𝜃)∫
Θ
𝐿 (y | 𝜃) 𝑝 (𝜃) 𝑑𝜃 , (17)
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whereΘ denotes the parameter space of 𝜃. It is clear that𝑝(𝜃 |
y) ∝ 𝐿(y | 𝜃)𝑝(𝜃), and then the posterior distribution can be
expressed by

𝑝 (𝜃 | y) ∝ 𝜏𝑛/2exp{−𝜏2
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑋0𝐸𝛼,1 (𝑎𝑡𝛼𝑖 )
− ∫𝑡𝑖
0
(𝑡𝑖 − 𝜂)𝛼−1 𝐸𝛼,𝛼 (𝑎 (𝑡𝑖 − 𝜂)𝛼) 𝑓 (𝜂) 𝑑𝜂)2}

⋅ 𝑎𝑟𝑎−1𝜏𝑟𝜏−1𝑋−10 exp{−(ln𝑋0 − 𝜇0)22𝜎20 − 𝑎𝜆𝑎
− 𝜏𝜆𝜏} .

(18)

Using a loss quadratic function, the Bayesian point
estimation is the posterior mean of 𝜃, which is given by

�̂�𝐵 = 𝐸 (𝜃 | y) . (19)

Note that the joint posterior distribution is analytically
intractable and the marginal posterior distributions of the
parameters are complicated; however, we can obtain sam-
ples from (18) using Markov Chain Monte Carlo (MCMC)
techniques. The most common MCMC methods are the
Gibbs sampling [14, 15] and the Metropolis-Hastings [16, 17].
Currently, many of the MCMC algorithms have been already
implemented in computer programs, such as WinBUGS and
JAGS [18] and Stan and t-walk [19]. All of these software pack-
ages provide programs for Bayesianmodeling through poste-
rior simulation given a specified model and data. The R [20]
packages, such as R2WinBUGS [21], R2jags [22], rjags [23],
and rstan [24], allow one to run WinBUGS, JAGS, and Stan
from within R software, respectively. In this paper, we use
JAGS within R to obtain samples from themarginal posterior
distributions of interest.

JAGS (Just Another Gibbs Sampler) is a program for anal-
ysis of Bayesian models using MCMC methods, which was
written in C++ byMartyn Plummer with three objectives: (a)
to have a cross-platform engine for the BUGS language, (b)
to be extensible, allowing users to write their own functions,
distributions, and samplers, and (c) to be a platform for
experimentation with ideas in Bayesian modeling (see [18]);
moreover, it is a free package. To draw samples from the pos-
terior distribution, JAGS use the Gibbs sampling and some-
times it is combined with or replaced by complex techniques
such as Metropolis-Hastings algorithm, slice sampling [25],
and Adaptive Rejection sampling [26]. In our work, JAGS
used slice sampling, which is briefly described as follows.

Let 𝑓(𝜃) be univariate probability density function from
which we want to obtain samples; for an initial value 𝜃0,𝑓(𝜃0) > 0, the new value, 𝜃1, will be found by a three-step
procedure:

(a) Sample a real value 𝑦 ∼ U(0, 𝑓(𝜃0)) and we define a
horizontal slice, 𝑆 = {𝜃 : 𝑦 < 𝑓(𝜃)}.

(b) Find an interval, (𝑙, 𝑟), around 𝜃0 that contains all, or
much, of the slice.

(c) Sample the new value, 𝜃1, from the part of the slice
within this interval.

For multivariate distributions, we can apply the single
variable slice sampling for each 𝜃𝑖, 𝑖 = 1, . . . , 𝑝, in turn. An
example of JAGS implementation is given in Appendix.

3.2. Bayesian Model Comparison. In this section, our interest
is to make a comparison between two different models.
In one, the dynamic system changes in an ordinary way
and in the other it changes anomalously, that is, with an
entire derivative and with a fractional derivative, respectively.
As soon as we obtain experimental data from a dynamical
phenomenon, the uncertainty becomes present. Moreover,
the mechanism that governs the evolution law is unknown
at some level. So, the challenge here is to know which model
best fits and best describes the data.

The Bayesian model selection in inverse problems frame-
work has not been much investigated. In [8] it is suggested to
validate the SDE approach via criteria based on the predictive
posterior distribution. To compare a numerical and the
theoretical posterior distribution, in [9] it was proposed to
use Bayes factors, considering both of them as models for the
data at hand. Other authors (see [27–29]) use Bayes factor
to select the best model. We carried out a comparison of
two models, defined below, from Bayesian point of view via
Bayes factor, where the marginal likelihood is obtained using
Gelfand and Dey’s estimator.

Now, let us define the models that we are going to
compare. The ordinary population growth model, M1, is
given by the dynamical system

𝑑𝑑𝑡𝑋 (𝑡) = 𝑎𝑋 (𝑡) , 𝑎 > 0; (20)

𝑋(𝑡0) = 𝑋0, (21)

and its corresponding observation equation, for 𝑛 observa-
tions,

𝑦(1)𝑖 = 𝑋0𝑒𝑎𝑡𝑖 + 𝜀𝑖, 𝑖 = 1, . . . , 𝑛. (22)

The fractional population growth model,M2, is given by

D
𝛼𝑋 (𝑡) = 𝑎𝑋 (𝑡) , 𝑎 > 0, 𝛼 ∈ (0, 1) ; (23)

𝑋(𝑡0) = 𝑋0, (24)

𝑦(2)𝑖 = 𝑋0𝐸𝛼,1 (𝑎𝑡𝛼𝑖 ) + 𝜀𝑖, 𝑖 = 1, . . . , 𝑛, (25)

where 𝐸𝛼,1(⋅) is defined in (8) and 𝜀𝑖 ∼ N(0, 𝜎2). Note that
for simplicity, in both models, the harvesting function 𝑓(𝑡) is
assumed to be zero and the function ℎ is taken as the identity
function.

So, for model M𝑘, 𝑘 = 1, 2, the posterior distribution
takes the form

𝑝 (𝜃𝑘 | y,M𝑘) ∝ 𝐿 (y | 𝜃𝑘,M𝑘) 𝑝 (𝜃𝑘 | M𝑘) , (26)

where 𝐿(y | 𝜃𝑘,M𝑘) is the likelihood function of the data
y󸀠 = (𝑦1, . . . , 𝑦𝑛) undermodelM𝑘 and𝑝(𝜃𝑘 | M𝑘) is the prior
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distribution of 𝜃𝑘. By substituting these expressions for each
model, we have

𝑝 (𝜃1 | y,M1) ∝ 𝜏𝑛/2+𝑟𝜏−1𝑎𝑟𝑎−1𝑋−10
⋅ exp{−𝜏2

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑋0𝑒𝑎𝑡𝑖)2 − (ln𝑋0 − 𝜇0)22𝜎20 − 𝜆𝑎𝑎
− 𝜆𝜏𝜏} ,

𝑝 (𝜃2 | y,M2) ∝ 𝜏𝑛/2+𝑟𝜏−1𝑎𝑟𝑎−1𝑋−10 exp{−𝜏2
⋅ 𝑛∑
𝑖=1

(𝑦𝑖 − 𝑋0𝐸𝛼 (𝑎𝑡𝛼𝑖 ))2 − (ln𝑋0 − 𝜇0)22𝜎20 − 𝜆𝑎𝑎
− 𝜆𝜏𝜏} .

(27)

To compare these models, we need to calculate the
marginal likelihood𝑚(y | M𝑘) for 𝑘 = 1, 2, given by

𝑚(y | M𝑘) = ∫
Θ𝑘

𝐿 (y | 𝜃𝑘,M𝑘) 𝑝 (𝜃𝑘 | M𝑘) 𝑑𝜃𝑘, (28)

and we choose the model which yields the largest marginal
likelihood [30]. Note that the equation above is the normal-
izing constant of the posterior density in (26), so it can be
written as

𝑚(y | M𝑘) = 𝐿 (y | 𝜃𝑘,M𝑘) 𝑝 (𝜃𝑘 | M𝑘)𝑝 (𝜃𝑘 | y,M𝑘) . (29)

In general, 𝑚(y | M𝑘) in (28) can not be represented
in terms of elementary functions and obtaining a numerical
approximation usually requires a huge computational effort.
On the other hand, to calculate 𝑚(y | M𝑘) using (29) is not
an easy task because we have many MCMC draws falling in
the tails of 𝑝(𝜃𝑘 | y,M𝑘) and this leads to a very unreliable
estimate of 𝑝(𝜃𝑘 | y,M𝑘). Methods to estimate 𝑚(y | M𝑘)
via MCMC sampling are discussed in [30–32]. We propose
the use of Gelfand and Dey’s estimator [33] to obtain an
approximation of𝑚(y | M𝑘), which is given by

�̂�𝐺𝐷
= {{{

1𝐺
𝐺∑
𝑔=1

( 𝜋(𝜃(𝑔)
𝑘
)

𝐿 (y | 𝜃(𝑔)
𝑘
,M𝑘) 𝑝 (𝜃(𝑔)

𝑘
| M𝑘))

}}}
−1

, (30)

where {𝜃(1)
𝑘
, . . . , 𝜃(𝐺)

𝑘
} are draws from the posterior density𝑝(𝜃𝑘 | y,M𝑘) obtained using MCMC method and 𝜋(⋅) is an

importance sampling density.The stability of (30) depends on
the importance density choice, which is recommended to be
of thinner tails compared to the product of the prior and the
likelihood. Natural choices of 𝜋(⋅) would be the multivariate
normal or Student 𝑡 densities with posterior sampling mean

and covariance. Then, we compare the models M1 and M2
via Bayes factor:

BF1,2 = exp {ln [𝑚 (y | M1)] − ln [𝑚 (y | M2)]} , (31)

where a value of BF1,2 greater than one indicates a preference
for modelM1 with respect to the modelM2.

4. Simulation Study

We carried out a simulation study to assess the performance
of the Bayesian estimators of the parameters of interest (𝜃𝑘,𝑘 = 1, 2) and the performance of the Bayes factor using
Gelfand and Dey’s estimator [32] for the marginal likelihood
(29). For this task, we used R software [20] with R2jags
package [22], under the following algorithm:

(1) We simulated 𝑀 = 1000 synthetic data sets form
a fractional population growth model using the true
values of the parameters 𝛼 = 0.5, 𝑎 = 0.2, 𝜎2 = 30,
and𝑋0 = 20 for two sample sizes, 𝑛 = 10 and 𝑛 = 30,
and two cases:𝑋0 known and𝑋0 unknown. Each data
set was simulated using the model defined in (25).

(2) For each simulated sample, we obtained Bayesian
estimators of the parameters both for modelM1 and
for modelM2.

(a) We calculated the Bayes estimators as the sam-
ple mean from (18) using JAGS within R. We
used two chains, each with 10000 iterations with
a burn-in of 1000 iterations and a thinning rate
of 9, so we kept a total of 2000 iterations tomake
inferences about the parameters of interest. The
following prior distributions for the parameters
in the models are assumed as

𝑎 ∼ G (0.001, 0.001) ,
𝛼 ∼ U (0, 1) ,
𝜏 ∼ G (0.001, 0.001) ,

(32)

note that for the parameters 𝑎 and 𝜏 we use
diffuse Gamma distributions, for 𝛼 we propose
Uniform prior distribution in (0, 1), and, for
the case of 𝑋0 unknown, a diffuse log-Normal
distribution is used,𝑋0 ∼ lnN(0, 1×103).These
distributions are called weakly informative prior
distributions, which contain some information
about the parameters of interest but without
affecting inferences by information external to
the current data [34].

(b) We estimated 95% credible intervals for each
parameter in each model; these intervals are
based on the 0.025 quantile and the 0.975 quan-
tile of the corresponding posterior sample.

(c) We calculate themarginal likelihood usingGelf-
and and Dey’s estimator given in (30) using
MCMC samples from the posterior density
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𝑝(𝜃𝑘 | y,M𝑘), 𝑘 = 1, 2. The multivariate nor-
mal density with posterior sampling mean and
covariance was used as importance sampling
density.

(d) We obtain an estimation of the Bayes factor of
M2 versus M1, denoted by B̂F2,1 using (31). If
B̂F2,1 ≥ 1, then we prefer the model M2 with
respect to the modelM1.

(3) From these 𝑀 samples, we obtained measures of the
bias and mean-squared error of the estimators, as
well as the coverage of the corresponding credible
intervals.

Our simulations were carried out for two sample sizes
(𝑛 = 10 and 𝑛 = 30) and two cases: 𝑋0 known and 𝑋0
unknown. Tables 1 and 2 show the estimate bias, MSE, and
coverage for the cases considered. We can observe that the
parameters estimation of the model M2 was more accurate
compared to the model M1, in terms of the estimated bias
and MSE. Also, the estimates coverage was near to 100%,
in the most cases considered, for the model M2. From our
simulation, for the case 𝑋0 known, the percentage of the
estimated Bayes factors in favour of M2 was 98.4% with𝑛 = 10 observations and 100% for 𝑛 = 30. For the case 𝑋0
unknown, the percentage of the estimated Bayes factors in
favour ofM2 was 94.0% with 𝑛 = 10 observations and 100%
for 𝑛 = 30.
5. Application

In this section, an example is given to illustrate the Bayesian
estimation and selection model approach proposed in this
paper. The data set used consists of 69 monthly measure-
ments (in percentages) of the mobile web use in the world,
from December 2008 to August 2014 (see Figure 2, dot
points).We can find this data from the link http://stats.arepp-
im.com/stats/stats mobiwebsubstxtime.htm. At a first glance
of data, one can think of an exponential growth model;
however, as we will see, this model is unable to fit the data in
satisfactory way. A generalization of this model is proposed,
where we add a new parameter for the order of the derivative.
The model defined in (23) is used to fit this data, and the
parameters of interest to be estimated, based in available data,
are 𝛼, 𝑎, and 𝜎2.

The prior distributions used were for 𝛼 ∼ U(0, 1), 𝑎 ∼
G(0.001, 0.001), and 1/𝜎2 ∼ G(0.001, 0.001). For the model
proposed, we used two chains, each with 500000 iterations,
and the first 250000 were discarded, taking a thinning rate
of 50. Thus, 10000 posterior samples were used to obtain the
summary statistics about the parameters of interest. Standard
convergence diagnostics were carried out. To mention a few,
the value of �̂� for each parameter of interest was quite close
to 1 for all models considered. Also, the Gelman-Rubin factor
and Geweke diagnostics were calculated and showed evi-
dence of convergence. Figure 1 shows the trace and estimated
posterior distributions of the estimated parameters of inter-
est.

library(R2jags)

library(coda)

library(lattice)

library(R2WinBUGS)

library(rjags)

Box 1

Posterior means are used as point estimates of the para-
meters of interest, for M1 : �̂� = 0.06 and �̂�2 = 4.31 and for
M2 : �̂� = 0.35, �̂� = 0.33, and �̂�2 = 0.52. Figure 2 shows the
fitted models considered. The Bayes factor was 64.25, giving
very strong evidence in favour of the modelM2.

6. Concluding Remarks

We estimated the parameters of a fractional population
growth model using Bayesian framework. From the model
proposed we can distinguish two different models, one with
ordinary derivative, 𝛼 = 1, and another with fractional
derivative, 𝛼 ∈ (0, 1). An estimation of the Bayes factor was
used to compare these two growth models. To measure the
performance of the parameters estimation and Bayes factor a
simulation study was conducted. As expected, the fractional
population growth model outperforms the ordinary popula-
tion growth model as is shown in Tables 1 and 2. In order to
estimate the Bayes factor, Gelfand and Dey’s estimator was
used to approximate the marginal likelihood. It is known that
this estimator could be unstable, even in the situation when
the importance density is chosen as a multivariate normal
density with mean and covariance obtained from MCMC
sampling; however, in this work, it was not the case. A sub-
sequent monitoring was carried on to check the stability. Our
results give numerical evidence of good performance of the
Bayes factor. Also, the inferences based on posterior simu-
lation are relatively easy to implement in JAGS within the R
software. Finally, we have shown a real data example where
the fractional growth model had a better fit with respect to
the ordinary model.

Appendix

JAGS Implementation

The proposed models were all implemented in JAGS using
the R2jags package. R2jags was used to fit the models and to
perform convergence diagnostics right within R. Here we use
the data set of Section 5 to illustrate the implementation of
modelM1 in JAGS.

(1) Packages. Load the required R packages (see Box 1).

(2) Data. Read the data from the working directory (see
Box 2).

(3) The Model. Write the model in BUGS code and save it as
“movil.model.jags” in the working directory (see Box 3).
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Figure 1: Trace and estimated posterior densities of 𝑎, 𝛼, and 𝜎2.
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Table 1: Estimated Bias, MSE, and coverage, with𝑋0 known.
Parameter M1 M2

Bias MSE Cov (%) Bias MSE Cov (%)𝑛 = 10𝑎 −0.105 0.011 0.0 0.008 0.002 97.4𝛼 — — — 0.013 0.018 98.3𝜎2 25.22 1218.77 82.7 10.51 480.56 97.0𝑛 = 30𝑎 −0.135 0.018 0.0 −0.001 0.0004 92.3𝛼 — — — 0.008 0.0019 92.4𝜎2 77.36 6457.78 0.0 1.091 71.55 94.0

Table 2: Estimated Bias, MSE, and coverage, with𝑋0 unknown.
Parameter M1 M2

Bias MSE Cov (%) Bias MSE Cov (%)𝑛 = 10𝑎 −0.100 0.010 0.0 0.028 0.003 100𝛼 — — — −0.004 0.005 100𝜎2 10.68 606.67 93.0 10.24 610.42 95.0𝑋0 5.82 40.76 60.2 0.68 9.61 100𝑛 = 30𝑎 −0.151 0.023 0.0 −0.008 0.007 90.2𝛼 — — — 0.092 0.029 90.1𝜎2 5.97 131.63 90.1 1.60 79.42 95.3𝑋0 9.44 90.63 0.0 1.44 14.69 92.0
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Figure 2: Mobile web (in percentage) from December 2008 to
August 2014.

setwd("my directory")
movil<-read.table(file="movil.txt", sep=",")
N<-length(movil)
t<-1:N
movil.data <- list("movil","t","N")

Box 2

model{
for (i in 1:N){
movil[i] ̃ dnorm(mu[i], tau)
mu[i] <- xo*exp(a*t[i])}
xo <- 0.6
a ̃ dgamma(0.001,0.001)
sigma2 <- 1/tau
tau ̃ dgamma(0.001,0.001) # media =1 y var=1000}", file="movil.model.jags", fill=T)}

Box 3
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movil.params<-c("a","sigma2")
Box 4

movil.inits<-function(){
list("a"=c(0.1,0.5), "tau"=c(0.02,0.5))}

Box 5

set.seed(123)
fit.movil<-jags(data=movil.data, inits = movil.inits, parameters.to.save=

movil.params, n.chains =2, n.iter = 500000, n.burnin=250000,
model.file="movil.model.jags")

print(fit.movil)

Box 6

movil.mcmc<-as.mcmc(fit.movil)
densityplot(movil.mcmc)
autocorr.plot(movil.mcmc)
gelman.plot(movil.mcmc)
geweke.plot(movil.mcmc)
raftery.plot(movil.mcmc)

Box 7

(4) Parameters. Define the parameters of interest (see Box 4).

(5) Initial Values. Define the starting values for the MCMC
runs (see Box 5).

(6) Fit. Fit the model in JAGS (see Box 6).

(7) Diagnostic. Convert the model output into an MCMC
object in order to have access to several convergence diag-
nostics (see Box 7).
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