Mostrar el registro sencillo del ítem

dc.contributor.authorFazel Niari, Zargham
dc.contributor.authorAfkari_Sayyah, Amir H.
dc.contributor.authorAbbaspour_Gilandeh, Yousef
dc.contributor.authorHerrera Miranda, Israel
dc.contributor.authorHernández-Hernández, José Luis
dc.contributor.authorHernández Hernández, Mario
dc.creatorFazel Niari, Zargham;#0000-0002-9658-990X
dc.creatorAfkari_Sayyah, Amir H.;#0000-0003-0657-5780
dc.creatorAbbaspour_Gilandeh, Yousef;#0000-0002-9999-7845
dc.creatorHerrera Miranda, Israel;#0000-0001-8031-797X
dc.creatorHernández-Hernández, José Luis;#0000-0003-0231-2019
dc.creatorHernández Hernández, Mario;#0000-0001-8330-4779
dc.date.accessioned2023-03-21T20:04:12Z
dc.date.available2023-03-21T20:04:12Z
dc.date.issued2022-04
dc.identifier.issnhttps://doi.org/10.3390/app12094133
dc.identifier.urihttp://ri.uagro.mx/handle/uagro/3502
dc.description.abstractTo use machine vision technology in visual quality control of cereal seeds, sufficient knowledge is necessary. In this work, the capability of machine visual systems, equipped with industrial digital cameras for the identification and classification of seven-grain groups in wheat seed samples, was studied. Two statistical models and three support vector machines were employed in this study. Through image processing of 21,000 single grains, the shape, colour, and textural features of each grain were determined. Ninety-one features were ranked through the ReliefF method. The shape features were the most prominent, followed by the textural and colour features. Among the five models tested, the highest classification accuracy was obtained using quadratic support vector machine (QSVM) and the first 35 features. In the test run of this model with independent data, the classification accuracy for sound white wheat, small white wheat, broken white wheat, shrunken white wheat, red wheat, barley and rye were, respectively, 98.7, 98, 99.3, 90.7, 99, 100, and 97.3%, with an overall average accuracy of 97.6%. In the context of this study, the machine visión system¿comprising an industrial digital camera and quadratic support vector machine or non-linear discriminate analysis method¿was identified as a valuable system in the investigation of the visual qualities of wheat seeds.
dc.formatpdf
dc.language.isoeng
dc.publisherJinsong Bao
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectcereal classification
dc.subjectwheat certification
dc.subjectimage processing
dc.subjectsupport vector machine
dc.subjectReliefF
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ALIMENTOS
dc.titleQuality Assessment of Components of Wheat Seed Using Different Classifications Models.
dc.typeArtículo
dc.type.conacytarticle
dc.rights.accesopenAccess
dc.audiencegeneralPublic
dc.identificator7||33||3309
dc.format.digitalOriginBorn digital
dc.thesis.degreelevelDoctorado
dc.thesis.degreenameDoctorado en Innovación y Cultura Digital
dc.thesis.degreegrantorUniversidad Autónoma de Guerrero
dc.thesis.degreedepartmentFacultad de Ingeniería
dc.thesis.degreedisciplineIngeniería y Tecnología
dc.identifier.cvuagro11228


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0