Mostrar el registro sencillo del ítem

dc.contributor.authorSabzi, Sajad
dc.contributor.authorPourdarbani, Razieh
dc.contributor.authorRohban, Mohammad Hossein
dc.contributor.authorFuentes_Penna, Alejandro
dc.contributor.authorHernández-Hernández, José Luis
dc.contributor.authorHernández Hernández, Mario
dc.creatorSabzi, Sajad;#0000-0003-2439-5329
dc.creatorPourdarbani, Razieh;#0000-0003-0766-8305
dc.creatorRohban, Mohammad Hossein;#0000-0001-6589-850X
dc.creatorFuentes_Penna, Alejandro;#0000-0002-4303-3852
dc.creatorHernández-Hernández, José Luis;#0000-0003-0231-2019
dc.creatorHernández Hernández, Mario;#0000-0001-8330-4779
dc.date.accessioned2023-03-23T16:46:03Z
dc.date.available2023-03-23T16:46:03Z
dc.date.issued2021-04
dc.identifier.issnhttps://doi.org/10.3390/ plants10050898
dc.identifier.urihttp://ri.uagro.mx/handle/uagro/3527
dc.description.abstractImproper usage of nitrogen in cucumber cultivation causes nitrate accumulation in the fruit and results in food poisoning in humans; therefore, mandatory evaluation of food products becomes inevitable. Hyperspectral imaging has a very good ability to evaluate the quality of fruits and vegetables in a non-destructive manner. The goal of the present paper was to identify excess nitrogen in cucumber plants. To obtain a reliable result, the majority voting method was used, which takes into account the unanimity of five classifiers, namely, the hybrid artificial neural network¿imperialism competitive algorithm (ANN-ICA), the hybrid artificial neural network¿harmonic search (ANN-HS) algorithm, linear discrimination analysis (LDA), the radial basis function network (RBF), and the Knearest- neighborhood (KNN). The wavelengths of 723, 781, and 901 nm were determined as optimal wavelengths using the hybrid artificial neural network¿biogeography-based optimization (ANNBBO) algorithm, and the performance of classifiers was investigated using the optimal spectrum. The results of a t-test showed that there was no significant difference in the precision of the algorithm when using the optimal wavelengths and wavelengths of the whole range. The correct classification rate of the classifiers ANN-ICA, ANN-HS, LDA, RBF, and KNN were 96.14%, 96.11%, 95.73%, 64.03%, and 95.24%, respectively. The correct classification rate of majority voting (MV) was 95.55% for test data in 200 iterations, which indicates the system was successful in distinguishing nitrogen-rich leaves from leaves with a standard content of nitrogen.
dc.formatpdf
dc.language.isoeng
dc.publisherPlants
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectartificial neural network
dc.subjectcucumber
dc.subjecthyperspectral imaging
dc.subjectmajority voting
dc.subjectnitrogen
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ALIMENTOS
dc.titleClassification of Cucumber Leaves Based on Nitrogen Content Using the Hyperspectral Imaging Technique and Majority Voting.
dc.typeArtículo
dc.type.conacytarticle
dc.rights.accesopenAccess
dc.audiencegeneralPublic
dc.identificator7||33||3309
dc.format.digitalOriginBorn digital
dc.thesis.degreelevelDoctorado
dc.thesis.degreenameDoctorado en Innovación y Cultura Digital
dc.thesis.degreegrantorUniversidad Autónoma de Guerrero
dc.thesis.degreedepartmentFacultad de Ingeniería
dc.thesis.degreedisciplineIngeniería y Tecnología
dc.identifier.cvuagro11228


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0