Show simple item record

dc.contributor.authorPourdarbani, Razieh
dc.contributor.authorSabzi, Sajad
dc.contributor.authorHernández Hernández, Mario
dc.contributor.authorHernández-Hernández, José Luis
dc.contributor.authorGallardo Bernal, Iván
dc.contributor.authorHerrera Miranda, Israel
dc.creatorPourdarbani, Razieh;#0000-0003-0766-8305
dc.creatorSabzi, Sajad;#0000-0003-2439-5329
dc.creatorHernández Hernández, Mario;#0000-0001-8330-4779
dc.creatorHernández-Hernández, José Luis;#0000-0003-0231-2019
dc.creatorGallardo Bernal, Iván;#0000-0002-1596-6786
dc.creatorHerrera Miranda, Israel;#0000-0001-8031-797X
dc.date.accessioned2023-03-23T16:46:29Z
dc.date.available2023-03-23T16:46:29Z
dc.date.issued2020-11
dc.identifier.issndoi:10.3390/plants9111547
dc.identifier.urihttp://ri.uagro.mx/handle/uagro/3529
dc.description.abstractNon-destructive assessment of the physicochemical properties of food products, especially fruits, makes it possible to examine the internal quality without any damage. This is applicable at different stages of fruit growth, harvesting stage, and storage as well as at the market stage. In this regard, the present study aimed to estimate the total chlorophyll content using three types of data: color data, spectral data, and spectral data related to the most effective wavelengths. The most important steps of the proposed algorithms include extracting spectral and color data from each sample of Fuji cultivar apple, selecting the most effective wavelengths at the range of 660¿720 nm using hybrid artificial neural network¿particle swarm optimization (ANN-PSO), non-destructive assessment of the chemical property of total chlorophyll content based on color data, and spectral data using hybrid artificial neural network-Imperialist competitive algorithm (ANN-ICA). In order to assess the reliability of the hybrid ANN-ICA, 1000 iterations were performed after selecting the optimal structure of the artificial neural network. According to the results, in the best training mode and using spectral data and the most effective wavelength, total chlorophyll content was predicted with the R2 and RMSE of 0.991 and 0.0035, 0.997 and 0.001, 0.997 and 0.0006, respectively.
dc.formatpdf
dc.language.isoeng
dc.publisherPlants
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectnon-destructive estimation
dc.subjectapples; spectroscopy
dc.subjectANN
dc.subjectICA algorithm
dc.subjectPSO algorithm
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ALIMENTOS
dc.titleNon-Destructive Estimation of Total Chlorophyll Content of Apple Fruit Based on Color Feature, Spectral Data and the Most EffectiveWavelengths Using Hybrid Artificial Neural Network-Imperialist Competitive Algorithm.
dc.typeArtículo
dc.type.conacytarticle
dc.rights.accesopenAccess
dc.audiencegeneralPublic
dc.identificator7||33||3309
dc.format.digitalOriginBorn digital
dc.thesis.degreelevelDoctorado
dc.thesis.degreenameDoctorado en Innovación y Cultura Digital
dc.thesis.degreegrantorUniversidad Autónoma de Guerrero
dc.thesis.degreedepartmentFacultad de Ingeniería
dc.thesis.degreedisciplineIngeniería y Tecnología
dc.identifier.cvuagro11228


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0